refactor newton's method code

This commit is contained in:
Simon Gardling 2022-03-10 10:27:53 -05:00
parent cc2722e58c
commit 3e00657ade
2 changed files with 92 additions and 99 deletions

View File

@ -2,7 +2,7 @@
use crate::function_output::FunctionOutput; use crate::function_output::FunctionOutput;
#[allow(unused_imports)] #[allow(unused_imports)]
use crate::misc::{debug_log, SteppedVector}; use crate::misc::{debug_log, newtons_method, SteppedVector};
use crate::egui_app::{DEFAULT_FUNCION, DEFAULT_RIEMANN}; use crate::egui_app::{DEFAULT_FUNCION, DEFAULT_RIEMANN};
use crate::parsing::BackingFunction; use crate::parsing::BackingFunction;
@ -228,109 +228,35 @@ impl FunctionEntry {
// Finds roots // Finds roots
fn roots(&mut self) { fn roots(&mut self) {
let resolution: f64 = (self.pixel_width as f64 / (self.max_x - self.min_x).abs()) as f64; let resolution: f64 = (self.pixel_width as f64 / (self.max_x - self.min_x).abs()) as f64;
let mut root_list: Vec<Value> = Vec::new(); self.output.roots = Some(
let mut last_ele: Option<Value> = None; newtons_method(
for ele in self.output.back.as_ref().unwrap().iter() { resolution,
if last_ele.is_none() { self.min_x..self.max_x,
last_ele = Some(*ele); self.output.back.to_owned().unwrap(),
continue; &|x: f64| self.function.get(x),
} &|x: f64| self.function.get_derivative_1(x),
)
let last_ele_signum = last_ele.unwrap().y.signum(); .iter()
let ele_signum = ele.y.signum(); .map(|x| Value::new(*x, self.function.get(*x)))
.collect(),
if last_ele_signum.is_nan() | ele_signum.is_nan() { );
continue;
}
if last_ele_signum != ele_signum {
// Do 50 iterations of newton's method, should be more than accurate
let x = {
let mut x1: f64 = last_ele.unwrap().x;
let mut x2: f64;
let mut fail: bool = false;
loop {
x2 = x1 - (self.function.get(x1) / self.function.get_derivative_1(x1));
if !(self.min_x..self.max_x).contains(&x2) {
fail = true;
break;
}
if (x2 - x1).abs() < resolution {
break;
}
x1 = x2;
}
match fail {
true => f64::NAN,
false => x1,
}
};
if !x.is_nan() {
root_list.push(Value::new(x, self.function.get(x)));
}
}
last_ele = Some(*ele);
}
self.output.roots = Some(root_list);
} }
// Finds extrema // Finds extrema
fn extrema(&mut self) { fn extrema(&mut self) {
let resolution: f64 = (self.pixel_width as f64 / (self.max_x - self.min_x).abs()) as f64; let resolution: f64 = (self.pixel_width as f64 / (self.max_x - self.min_x).abs()) as f64;
let mut extrama_list: Vec<Value> = Vec::new(); self.output.extrema = Some(
let mut last_ele: Option<Value> = None; newtons_method(
for ele in self.output.derivative.as_ref().unwrap().iter() { resolution,
if last_ele.is_none() { self.min_x..self.max_x,
last_ele = Some(*ele); self.output.derivative.to_owned().unwrap(),
continue; &|x: f64| self.function.get_derivative_1(x),
} &|x: f64| self.function.get_derivative_2(x),
)
let last_ele_signum = last_ele.unwrap().y.signum(); .iter()
let ele_signum = ele.y.signum(); .map(|x| Value::new(*x, self.function.get(*x)))
.collect(),
if last_ele_signum.is_nan() | ele_signum.is_nan() { );
continue;
}
if last_ele_signum != ele_signum {
// Do 50 iterations of newton's method, should be more than accurate
let x = {
let mut x1: f64 = last_ele.unwrap().x;
let mut x2: f64;
let mut fail: bool = false;
loop {
x2 = x1
- (self.function.get_derivative_1(x1)
/ self.function.get_derivative_2(x1));
if !(self.min_x..self.max_x).contains(&x2) {
fail = true;
break;
}
if (x2 - x1).abs() < resolution {
break;
}
x1 = x2;
}
match fail {
true => f64::NAN,
false => x1,
}
};
if !x.is_nan() {
extrama_list.push(Value::new(x, self.function.get(x)));
}
}
last_ele = Some(*ele);
}
self.output.extrema = Some(extrama_list);
} }
pub fn display( pub fn display(

View File

@ -1,3 +1,7 @@
use std::ops::Range;
use eframe::egui::plot::Value;
cfg_if::cfg_if! { cfg_if::cfg_if! {
if #[cfg(target_arch = "wasm32")] { if #[cfg(target_arch = "wasm32")] {
use wasm_bindgen::prelude::*; use wasm_bindgen::prelude::*;
@ -90,3 +94,66 @@ pub fn digits_precision(x: f64, digits: usize) -> f64 {
let large_number: f64 = 10.0_f64.powf(digits as f64); let large_number: f64 = 10.0_f64.powf(digits as f64);
(x * large_number).round() / large_number (x * large_number).round() / large_number
} }
/// Implements newton's method of finding roots.
/// `threshold` is the target accuracy threshold
/// `range` is the range of valid x values (used to stop calculation when the point won't display anyways)
/// `data` is the data to iterate over (a Vector of egui's `Value` struct)
/// `f` is f(x)
/// `f_` is f'(x)
/// The function returns a list of `x` values where roots occur
pub fn newtons_method(
threshold: f64, range: Range<f64>, data: Vec<Value>, f: &dyn Fn(f64) -> f64,
f_1: &dyn Fn(f64) -> f64,
) -> Vec<f64> {
let mut output_list: Vec<f64> = Vec::new();
let mut last_ele: Option<Value> = None;
for ele in data.iter() {
if last_ele.is_none() {
last_ele = Some(*ele);
continue;
}
let last_ele_signum = last_ele.unwrap().y.signum();
let ele_signum = ele.y.signum();
// If either are NaN, just continue iterating
if last_ele_signum.is_nan() | ele_signum.is_nan() {
continue;
}
if last_ele_signum != ele_signum {
// Do 50 iterations of newton's method, should be more than accurate
let x = {
let mut x1: f64 = last_ele.unwrap().x;
let mut x2: f64;
let mut fail: bool = false;
loop {
x2 = x1 - (f(x1) / f_1(x1));
if !range.contains(&x2) {
fail = true;
break;
}
if (x2 - x1).abs() < threshold {
break;
}
x1 = x2;
}
match fail {
true => f64::NAN,
false => x1,
}
};
if !x.is_nan() {
output_list.push(x);
}
}
last_ele = Some(*ele);
}
output_list
}