cargo clippy + fmt

This commit is contained in:
2025-12-03 11:43:42 -05:00
parent 5a92020dae
commit aa07631296
15 changed files with 2069 additions and 2016 deletions

View File

@@ -1,159 +1,159 @@
use parsing::{AutoComplete, Hint, Movement};
enum Action<'a> {
AssertIndex(usize),
AssertString(&'a str),
AssertHint(&'a str),
SetString(&'a str),
Move(Movement),
AssertIndex(usize),
AssertString(&'a str),
AssertHint(&'a str),
SetString(&'a str),
Move(Movement),
}
use Action::*;
fn ac_tester(actions: &[Action]) {
let mut ac = AutoComplete::default();
for action in actions.iter() {
match action {
AssertIndex(target_i) => {
if &ac.i != target_i {
panic!(
"AssertIndex failed: Current: '{}' Expected: '{}'",
ac.i, target_i
)
}
}
AssertString(target_string) => {
if &ac.string != target_string {
panic!(
"AssertString failed: Current: '{}' Expected: '{}'",
ac.string, target_string
)
}
}
AssertHint(target_hint) => match ac.hint {
Hint::None => {
if !target_hint.is_empty() {
panic!(
"AssertHint failed on `Hint::None`: Expected: {}",
target_hint
);
}
}
Hint::Many(hints) => {
let hint = hints[ac.i];
if &hint != target_hint {
panic!(
"AssertHint failed on `Hint::Many`: Current: '{}' (index: {}) Expected: '{}'",
hint, ac.i, target_hint
)
}
}
Hint::Single(hint) => {
if hint != target_hint {
panic!(
"AssertHint failed on `Hint::Single`: Current: '{}' Expected: '{}'",
hint, target_hint
)
}
}
},
SetString(target_string) => {
ac.update_string(target_string);
}
Move(target_movement) => {
ac.register_movement(target_movement);
}
}
}
let mut ac = AutoComplete::default();
for action in actions.iter() {
match action {
AssertIndex(target_i) => {
if &ac.i != target_i {
panic!(
"AssertIndex failed: Current: '{}' Expected: '{}'",
ac.i, target_i
)
}
}
AssertString(target_string) => {
if &ac.string != target_string {
panic!(
"AssertString failed: Current: '{}' Expected: '{}'",
ac.string, target_string
)
}
}
AssertHint(target_hint) => match ac.hint {
Hint::None => {
if !target_hint.is_empty() {
panic!(
"AssertHint failed on `Hint::None`: Expected: {}",
target_hint
);
}
}
Hint::Many(hints) => {
let hint = hints[ac.i];
if &hint != target_hint {
panic!(
"AssertHint failed on `Hint::Many`: Current: '{}' (index: {}) Expected: '{}'",
hint, ac.i, target_hint
)
}
}
Hint::Single(hint) => {
if hint != target_hint {
panic!(
"AssertHint failed on `Hint::Single`: Current: '{}' Expected: '{}'",
hint, target_hint
)
}
}
},
SetString(target_string) => {
ac.update_string(target_string);
}
Move(target_movement) => {
ac.register_movement(target_movement);
}
}
}
}
#[test]
fn single() {
ac_tester(&[
SetString(""),
AssertHint("x^2"),
Move(Movement::Up),
AssertIndex(0),
AssertString(""),
AssertHint("x^2"),
Move(Movement::Down),
AssertIndex(0),
AssertString(""),
AssertHint("x^2"),
Move(Movement::Complete),
AssertString("x^2"),
AssertHint(""),
AssertIndex(0),
]);
ac_tester(&[
SetString(""),
AssertHint("x^2"),
Move(Movement::Up),
AssertIndex(0),
AssertString(""),
AssertHint("x^2"),
Move(Movement::Down),
AssertIndex(0),
AssertString(""),
AssertHint("x^2"),
Move(Movement::Complete),
AssertString("x^2"),
AssertHint(""),
AssertIndex(0),
]);
}
#[test]
fn multi() {
ac_tester(&[
SetString("s"),
AssertHint("in("),
Move(Movement::Up),
AssertIndex(3),
AssertString("s"),
AssertHint("ignum("),
Move(Movement::Down),
AssertIndex(0),
AssertString("s"),
AssertHint("in("),
Move(Movement::Down),
AssertIndex(1),
AssertString("s"),
AssertHint("qrt("),
Move(Movement::Up),
AssertIndex(0),
AssertString("s"),
AssertHint("in("),
Move(Movement::Complete),
AssertString("sin("),
AssertHint(")"),
AssertIndex(0),
]);
ac_tester(&[
SetString("s"),
AssertHint("in("),
Move(Movement::Up),
AssertIndex(3),
AssertString("s"),
AssertHint("ignum("),
Move(Movement::Down),
AssertIndex(0),
AssertString("s"),
AssertHint("in("),
Move(Movement::Down),
AssertIndex(1),
AssertString("s"),
AssertHint("qrt("),
Move(Movement::Up),
AssertIndex(0),
AssertString("s"),
AssertHint("in("),
Move(Movement::Complete),
AssertString("sin("),
AssertHint(")"),
AssertIndex(0),
]);
}
#[test]
fn none() {
// string that should give no hints
let random = "qwert987gybhj";
assert_eq!(parsing::generate_hint(random), &Hint::None);
// string that should give no hints
let random = "qwert987gybhj";
assert_eq!(parsing::generate_hint(random), &Hint::None);
ac_tester(&[
SetString(random),
AssertHint(""),
Move(Movement::Up),
AssertIndex(0),
AssertString(random),
AssertHint(""),
Move(Movement::Down),
AssertIndex(0),
AssertString(random),
AssertHint(""),
Move(Movement::Complete),
AssertString(random),
AssertHint(""),
AssertIndex(0),
]);
ac_tester(&[
SetString(random),
AssertHint(""),
Move(Movement::Up),
AssertIndex(0),
AssertString(random),
AssertHint(""),
Move(Movement::Down),
AssertIndex(0),
AssertString(random),
AssertHint(""),
Move(Movement::Complete),
AssertString(random),
AssertHint(""),
AssertIndex(0),
]);
}
#[test]
fn parens() {
ac_tester(&[
SetString("sin(x"),
AssertHint(")"),
Move(Movement::Up),
AssertIndex(0),
AssertString("sin(x"),
AssertHint(")"),
Move(Movement::Down),
AssertIndex(0),
AssertString("sin(x"),
AssertHint(")"),
Move(Movement::Complete),
AssertString("sin(x)"),
AssertHint(""),
AssertIndex(0),
]);
ac_tester(&[
SetString("sin(x"),
AssertHint(")"),
Move(Movement::Up),
AssertIndex(0),
AssertString("sin(x"),
AssertHint(")"),
Move(Movement::Down),
AssertIndex(0),
AssertString("sin(x"),
AssertHint(")"),
Move(Movement::Complete),
AssertString("sin(x)"),
AssertHint(""),
AssertIndex(0),
]);
}

View File

@@ -1,262 +1,273 @@
use ytbn_graphing_software::{AppSettings, EguiHelper, FunctionEntry, Riemann};
fn app_settings_constructor(
sum: Riemann, integral_min_x: f64, integral_max_x: f64, pixel_width: usize,
integral_num: usize, min_x: f64, max_x: f64,
sum: Riemann,
integral_min_x: f64,
integral_max_x: f64,
pixel_width: usize,
integral_num: usize,
min_x: f64,
max_x: f64,
) -> AppSettings {
AppSettings {
riemann_sum: sum,
integral_min_x,
integral_max_x,
min_x,
max_x,
integral_changed: true,
integral_num,
do_extrema: false,
do_roots: false,
plot_width: pixel_width,
}
AppSettings {
riemann_sum: sum,
integral_min_x,
integral_max_x,
min_x,
max_x,
integral_changed: true,
integral_num,
do_extrema: false,
do_roots: false,
plot_width: pixel_width,
}
}
static BACK_TARGET: [(f64, f64); 11] = [
(-1.0, 1.0),
(-0.8, 0.6400000000000001),
(-0.6, 0.36),
(-0.4, 0.16000000000000003),
(-0.19999999999999996, 0.03999999999999998),
(0.0, 0.0),
(0.19999999999999996, 0.03999999999999998),
(0.3999999999999999, 0.15999999999999992),
(0.6000000000000001, 0.3600000000000001),
(0.8, 0.6400000000000001),
(1.0, 1.0),
(-1.0, 1.0),
(-0.8, 0.6400000000000001),
(-0.6, 0.36),
(-0.4, 0.16000000000000003),
(-0.19999999999999996, 0.03999999999999998),
(0.0, 0.0),
(0.19999999999999996, 0.03999999999999998),
(0.3999999999999999, 0.15999999999999992),
(0.6000000000000001, 0.3600000000000001),
(0.8, 0.6400000000000001),
(1.0, 1.0),
];
static DERIVATIVE_TARGET: [(f64, f64); 11] = [
(-1.0, -2.0),
(-0.8, -1.6),
(-0.6, -1.2),
(-0.4, -0.8),
(-0.19999999999999996, -0.3999999999999999),
(0.0, 0.0),
(0.19999999999999996, 0.3999999999999999),
(0.3999999999999999, 0.7999999999999998),
(0.6000000000000001, 1.2000000000000002),
(0.8, 1.6),
(1.0, 2.0),
(-1.0, -2.0),
(-0.8, -1.6),
(-0.6, -1.2),
(-0.4, -0.8),
(-0.19999999999999996, -0.3999999999999999),
(0.0, 0.0),
(0.19999999999999996, 0.3999999999999999),
(0.3999999999999999, 0.7999999999999998),
(0.6000000000000001, 1.2000000000000002),
(0.8, 1.6),
(1.0, 2.0),
];
#[cfg(test)]
fn do_test(sum: Riemann, area_target: f64) {
let settings = app_settings_constructor(sum, -1.0, 1.0, 10, 10, -1.0, 1.0);
let settings = app_settings_constructor(sum, -1.0, 1.0, 10, 10, -1.0, 1.0);
let mut function = FunctionEntry::default();
function.update_string("x^2");
function.integral = true;
function.derivative = true;
let mut function = FunctionEntry::default();
function.update_string("x^2");
function.integral = true;
function.derivative = true;
let mut settings = settings;
{
function.calculate(true, true, false, settings);
assert!(!function.back_data.is_empty());
assert_eq!(function.back_data.len(), settings.plot_width + 1);
let mut settings = settings;
{
function.calculate(true, true, false, settings);
assert!(!function.back_data.is_empty());
assert_eq!(function.back_data.len(), settings.plot_width + 1);
assert!(function.integral);
assert!(function.derivative);
assert!(function.integral);
assert!(function.derivative);
assert_eq!(!function.root_data.is_empty(), settings.do_roots);
assert_eq!(!function.extrema_data.is_empty(), settings.do_extrema);
assert!(!function.derivative_data.is_empty());
assert!(function.integral_data.is_some());
assert_eq!(!function.root_data.is_empty(), settings.do_roots);
assert_eq!(!function.extrema_data.is_empty(), settings.do_extrema);
assert!(!function.derivative_data.is_empty());
assert!(function.integral_data.is_some());
assert_eq!(function.integral_data.clone().unwrap().1, area_target);
assert_eq!(function.integral_data.clone().unwrap().1, area_target);
let a = function.derivative_data.clone().to_tuple();
let a = function.derivative_data.clone().to_tuple();
assert_eq!(a.len(), DERIVATIVE_TARGET.len());
assert_eq!(a.len(), DERIVATIVE_TARGET.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, DERIVATIVE_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, DERIVATIVE_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, DERIVATIVE_TARGET);
}
}
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, DERIVATIVE_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, DERIVATIVE_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, DERIVATIVE_TARGET);
}
}
let a_1 = function.back_data.clone().to_tuple();
let a_1 = function.back_data.clone().to_tuple();
assert_eq!(a_1.len(), BACK_TARGET.len());
assert_eq!(a_1.len(), BACK_TARGET.len());
assert_eq!(a.len(), BACK_TARGET.len());
assert_eq!(a.len(), BACK_TARGET.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, BACK_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, BACK_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, BACK_TARGET);
}
}
}
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, BACK_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, BACK_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, BACK_TARGET);
}
}
}
{
settings.min_x += 1.0;
settings.max_x += 1.0;
function.calculate(true, true, false, settings);
{
settings.min_x += 1.0;
settings.max_x += 1.0;
function.calculate(true, true, false, settings);
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
{
settings.min_x -= 2.0;
settings.max_x -= 2.0;
function.calculate(true, true, false, settings);
{
settings.min_x -= 2.0;
settings.max_x -= 2.0;
function.calculate(true, true, false, settings);
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
{
function.update_string("sin(x)");
assert!(function.get_test_result().is_none());
assert_eq!(&function.raw_func_str, "sin(x)");
{
function.update_string("sin(x)");
assert!(function.get_test_result().is_none());
assert_eq!(&function.raw_func_str, "sin(x)");
function.integral = false;
function.derivative = false;
function.integral = false;
function.derivative = false;
assert!(!function.integral);
assert!(!function.derivative);
assert!(!function.integral);
assert!(!function.derivative);
assert!(function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(function.derivative_data.is_empty());
assert!(function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(function.derivative_data.is_empty());
settings.min_x -= 1.0;
settings.max_x -= 1.0;
settings.min_x -= 1.0;
settings.max_x -= 1.0;
function.calculate(true, true, false, settings);
function.calculate(true, true, false, settings);
assert!(!function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(!function.derivative_data.is_empty());
}
assert!(!function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(!function.derivative_data.is_empty());
}
}
#[test]
fn left_function() { do_test(Riemann::Left, 0.9600000000000001); }
fn left_function() {
do_test(Riemann::Left, 0.9600000000000001);
}
#[test]
fn middle_function() { do_test(Riemann::Middle, 0.92); }
fn middle_function() {
do_test(Riemann::Middle, 0.92);
}
#[test]
fn right_function() { do_test(Riemann::Right, 0.8800000000000001); }
fn right_function() {
do_test(Riemann::Right, 0.8800000000000001);
}

View File

@@ -2,90 +2,90 @@
/// Ensures [`decimal_round`] returns correct values
#[test]
fn decimal_round() {
use ytbn_graphing_software::decimal_round;
use ytbn_graphing_software::decimal_round;
assert_eq!(decimal_round(0.00001, 1), 0.0);
assert_eq!(decimal_round(0.00001, 2), 0.0);
assert_eq!(decimal_round(0.00001, 3), 0.0);
assert_eq!(decimal_round(0.00001, 4), 0.0);
assert_eq!(decimal_round(0.00001, 5), 0.00001);
assert_eq!(decimal_round(0.00001, 1), 0.0);
assert_eq!(decimal_round(0.00001, 2), 0.0);
assert_eq!(decimal_round(0.00001, 3), 0.0);
assert_eq!(decimal_round(0.00001, 4), 0.0);
assert_eq!(decimal_round(0.00001, 5), 0.00001);
assert_eq!(decimal_round(0.12345, 1), 0.1);
assert_eq!(decimal_round(0.12345, 2), 0.12);
assert_eq!(decimal_round(0.12345, 3), 0.123);
assert_eq!(decimal_round(0.12345, 4), 0.1235); // rounds up
assert_eq!(decimal_round(0.12345, 5), 0.12345);
assert_eq!(decimal_round(0.12345, 1), 0.1);
assert_eq!(decimal_round(0.12345, 2), 0.12);
assert_eq!(decimal_round(0.12345, 3), 0.123);
assert_eq!(decimal_round(0.12345, 4), 0.1235); // rounds up
assert_eq!(decimal_round(0.12345, 5), 0.12345);
assert_eq!(decimal_round(1.9, 0), 2.0);
assert_eq!(decimal_round(1.9, 1), 1.9);
assert_eq!(decimal_round(1.9, 0), 2.0);
assert_eq!(decimal_round(1.9, 1), 1.9);
}
*/
#[test]
fn step_helper() {
use ytbn_graphing_software::step_helper;
use ytbn_graphing_software::step_helper;
assert_eq!(
step_helper(10, 2.0, 3.0),
vec![2.0, 5.0, 8.0, 11.0, 14.0, 17.0, 20.0, 23.0, 26.0, 29.0]
);
assert_eq!(
step_helper(10, 2.0, 3.0),
vec![2.0, 5.0, 8.0, 11.0, 14.0, 17.0, 20.0, 23.0, 26.0, 29.0]
);
}
/// Tests [`option_vec_printer`]
#[test]
fn option_vec_printer() {
use std::collections::HashMap;
use ytbn_graphing_software::option_vec_printer;
use std::collections::HashMap;
use ytbn_graphing_software::option_vec_printer;
let values_strings: HashMap<Vec<Option<&str>>, &str> = HashMap::from([
(vec![None], "[None]"),
(vec![Some("text"), None], "[text, None]"),
(vec![None, None], "[None, None]"),
(vec![Some("text1"), Some("text2")], "[text1, text2]"),
]);
let values_strings: HashMap<Vec<Option<&str>>, &str> = HashMap::from([
(vec![None], "[None]"),
(vec![Some("text"), None], "[text, None]"),
(vec![None, None], "[None, None]"),
(vec![Some("text1"), Some("text2")], "[text1, text2]"),
]);
for (key, value) in values_strings {
assert_eq!(option_vec_printer(&key), value);
}
for (key, value) in values_strings {
assert_eq!(option_vec_printer(&key), value);
}
let values_nums = HashMap::from([
(vec![Some(10)], "[10]"),
(vec![Some(10), None], "[10, None]"),
(vec![None, Some(10)], "[None, 10]"),
(vec![Some(10), Some(100)], "[10, 100]"),
]);
let values_nums = HashMap::from([
(vec![Some(10)], "[10]"),
(vec![Some(10), None], "[10, None]"),
(vec![None, Some(10)], "[None, 10]"),
(vec![Some(10), Some(100)], "[10, 100]"),
]);
for (key, value) in values_nums {
assert_eq!(option_vec_printer(&key), value);
}
for (key, value) in values_nums {
assert_eq!(option_vec_printer(&key), value);
}
}
#[test]
fn hashed_storage() {
use ytbn_graphing_software::{hashed_storage_create, hashed_storage_read};
use ytbn_graphing_software::{hashed_storage_create, hashed_storage_read};
let commit = "abcdefeg".chars().map(|c| c as u8).collect::<Vec<u8>>();
let data = "really cool data"
.chars()
.map(|c| c as u8)
.collect::<Vec<u8>>();
let storage_tmp: [u8; 8] = commit
.as_slice()
.try_into()
.expect("cannot turn into [u8; 8]");
let storage = hashed_storage_create(storage_tmp, data.as_slice());
let commit = "abcdefeg".chars().map(|c| c as u8).collect::<Vec<u8>>();
let data = "really cool data"
.chars()
.map(|c| c as u8)
.collect::<Vec<u8>>();
let storage_tmp: [u8; 8] = commit
.as_slice()
.try_into()
.expect("cannot turn into [u8; 8]");
let storage = hashed_storage_create(storage_tmp, data.as_slice());
let read = hashed_storage_read(&storage);
assert_eq!(
read.map(|(a, b)| (a.to_vec(), b.to_vec())),
Some((commit.to_vec(), data.to_vec()))
);
let read = hashed_storage_read(&storage);
assert_eq!(
read.map(|(a, b)| (a.to_vec(), b.to_vec())),
Some((commit.to_vec(), data.to_vec()))
);
}
#[test]
fn invalid_hashed_storage() {
use ytbn_graphing_software::hashed_storage_read;
assert_eq!(hashed_storage_read("aaaa"), None);
use ytbn_graphing_software::hashed_storage_read;
assert_eq!(hashed_storage_read("aaaa"), None);
}
// #[test]
@@ -141,45 +141,45 @@ fn invalid_hashed_storage() {
#[test]
fn newtons_method() {
use parsing::BackingFunction;
use parsing::FlatExWrapper;
fn get_flatexwrapper(func: &str) -> FlatExWrapper {
let mut backing_func = BackingFunction::new(func).unwrap();
backing_func.get_function_derivative(0).clone()
}
use parsing::BackingFunction;
use parsing::FlatExWrapper;
fn get_flatexwrapper(func: &str) -> FlatExWrapper {
let mut backing_func = BackingFunction::new(func).unwrap();
backing_func.get_function_derivative(0).clone()
}
use ytbn_graphing_software::newtons_method;
use ytbn_graphing_software::newtons_method;
let data = newtons_method(
&get_flatexwrapper("x^2 -1"),
&get_flatexwrapper("2x"),
3.0,
&(0.0..5.0),
f64::EPSILON,
);
assert_eq!(data, Some(1.0));
let data = newtons_method(
&get_flatexwrapper("x^2 -1"),
&get_flatexwrapper("2x"),
3.0,
&(0.0..5.0),
f64::EPSILON,
);
assert_eq!(data, Some(1.0));
let data = newtons_method(
&get_flatexwrapper("sin(x)"),
&get_flatexwrapper("cos(x)"),
3.0,
&(2.95..3.18),
f64::EPSILON,
);
assert_eq!(data, Some(std::f64::consts::PI));
let data = newtons_method(
&get_flatexwrapper("sin(x)"),
&get_flatexwrapper("cos(x)"),
3.0,
&(2.95..3.18),
f64::EPSILON,
);
assert_eq!(data, Some(std::f64::consts::PI));
}
#[test]
fn to_unicode_hash() {
use ytbn_graphing_software::to_unicode_hash;
assert_eq!(to_unicode_hash('\u{1f31e}'), "\\U1F31E");
use ytbn_graphing_software::to_unicode_hash;
assert_eq!(to_unicode_hash('\u{1f31e}'), "\\U1F31E");
}
#[test]
fn to_chars_array() {
use ytbn_graphing_software::to_chars_array;
assert_eq!(
to_chars_array(vec!['\u{1f31e}', '\u{2d12c}']),
r"['\u{1f31e}', '\u{2d12c}']"
);
use ytbn_graphing_software::to_chars_array;
assert_eq!(
to_chars_array(vec!['\u{1f31e}', '\u{2d12c}']),
r"['\u{1f31e}', '\u{2d12c}']"
);
}

View File

@@ -3,292 +3,292 @@ use std::collections::HashMap;
#[test]
fn hashmap_gen_test() {
let data = ["time", "text", "test"];
let expect = vec![
("t", "Hint::Many(&[\"ime(\", \"ext(\", \"est(\"])"),
("te", "Hint::Many(&[\"xt(\", \"st(\"])"),
("tes", "Hint::Single(\"t(\")"),
("test", "Hint::Single(\"(\")"),
("tex", "Hint::Single(\"t(\")"),
("text", "Hint::Single(\"(\")"),
("ti", "Hint::Single(\"me(\")"),
("tim", "Hint::Single(\"e(\")"),
("time", "Hint::Single(\"(\")"),
];
let data = ["time", "text", "test"];
let expect = vec![
("t", "Hint::Many(&[\"ime(\", \"ext(\", \"est(\"])"),
("te", "Hint::Many(&[\"xt(\", \"st(\"])"),
("tes", "Hint::Single(\"t(\")"),
("test", "Hint::Single(\"(\")"),
("tex", "Hint::Single(\"t(\")"),
("text", "Hint::Single(\"(\")"),
("ti", "Hint::Single(\"me(\")"),
("tim", "Hint::Single(\"e(\")"),
("time", "Hint::Single(\"(\")"),
];
assert_eq!(
parsing::compile_hashmap(data.iter().map(|e| e.to_string()).collect()),
expect
.iter()
.map(|(a, b)| (a.to_string(), b.to_string()))
.collect::<Vec<(String, String)>>()
);
assert_eq!(
parsing::compile_hashmap(data.iter().map(|e| e.to_string()).collect()),
expect
.iter()
.map(|(a, b)| (a.to_string(), b.to_string()))
.collect::<Vec<(String, String)>>()
);
}
/// Returns if function with string `func_str` is valid after processing through [`process_func_str`]
fn func_is_valid(func_str: &str) -> bool {
parsing::BackingFunction::new(&parsing::process_func_str(func_str)).is_ok()
parsing::BackingFunction::new(&parsing::process_func_str(func_str)).is_ok()
}
/// Used for testing: passes function to [`process_func_str`] before running [`test_func`]. if `expect_valid` == `true`, it expects no errors to be created.
fn test_func_helper(func_str: &str, expect_valid: bool) {
let is_valid = func_is_valid(func_str);
let string = format!(
"function: {} (expected: {}, got: {})",
func_str, expect_valid, is_valid
);
let is_valid = func_is_valid(func_str);
let string = format!(
"function: {} (expected: {}, got: {})",
func_str, expect_valid, is_valid
);
if is_valid == expect_valid {
println!("{}", string);
} else {
panic!("{}", string);
}
if is_valid == expect_valid {
println!("{}", string);
} else {
panic!("{}", string);
}
}
/// Tests to make sure functions that are expected to succeed, succeed.
#[test]
fn test_expected() {
let values = HashMap::from([
("", true),
("x^2", true),
("2x", true),
("E^x", true),
("log10(x)", true),
("xxxxx", true),
("sin(x)", true),
("xsin(x)", true),
("sin(x)cos(x)", true),
("x/0", true),
("(x+1)(x-3)", true),
("cos(xsin(x)x)", true),
("(2x+1)x", true),
("(2x+1)pi", true),
("pi(2x+1)", true),
("pipipipipipix", true),
("e^sin(x)", true),
("E^sin(x)", true),
("e^x", true),
("x**2", true),
("a", false),
("log222(x)", false),
("abcdef", false),
("log10(x", false),
("x^a", false),
("sin(cos(x)))", false),
("0/0", false),
]);
let values = HashMap::from([
("", true),
("x^2", true),
("2x", true),
("E^x", true),
("log10(x)", true),
("xxxxx", true),
("sin(x)", true),
("xsin(x)", true),
("sin(x)cos(x)", true),
("x/0", true),
("(x+1)(x-3)", true),
("cos(xsin(x)x)", true),
("(2x+1)x", true),
("(2x+1)pi", true),
("pi(2x+1)", true),
("pipipipipipix", true),
("e^sin(x)", true),
("E^sin(x)", true),
("e^x", true),
("x**2", true),
("a", false),
("log222(x)", false),
("abcdef", false),
("log10(x", false),
("x^a", false),
("sin(cos(x)))", false),
("0/0", false),
]);
for (key, value) in values {
test_func_helper(key, value);
}
for (key, value) in values {
test_func_helper(key, value);
}
}
/// Helps with tests of [`process_func_str`]
fn test_process_helper(input: &str, expected: &str) {
assert_eq!(&parsing::process_func_str(input), expected);
assert_eq!(&parsing::process_func_str(input), expected);
}
/// Tests to make sure my cursed function works as intended
#[test]
fn func_process_test() {
let values = HashMap::from([
("2x", "2*x"),
(")(", ")*("),
("(2", "(2"),
("log10(x)", "log10(x)"),
("log2(x)", "log2(x)"),
("pipipipipipi", "π*π*π*π*π*π"),
("10pi", "10*π"),
("pi10", "π*10"),
("10pi10", "10*π*10"),
("emax(x)", "e*max(x)"),
("pisin(x)", "π*sin(x)"),
("e^sin(x)", "e^sin(x)"),
("x**2", "x^2"),
("(x+1)(x-3)", "(x+1)*(x-3)"),
]);
let values = HashMap::from([
("2x", "2*x"),
(")(", ")*("),
("(2", "(2"),
("log10(x)", "log10(x)"),
("log2(x)", "log2(x)"),
("pipipipipipi", "π*π*π*π*π*π"),
("10pi", "10*π"),
("pi10", "π*10"),
("10pi10", "10*π*10"),
("emax(x)", "e*max(x)"),
("pisin(x)", "π*sin(x)"),
("e^sin(x)", "e^sin(x)"),
("x**2", "x^2"),
("(x+1)(x-3)", "(x+1)*(x-3)"),
]);
for (key, value) in values {
test_process_helper(key, value);
}
for (key, value) in values {
test_process_helper(key, value);
}
for func in SUPPORTED_FUNCTIONS.iter() {
let func_new = format!("{}(x)", func);
test_process_helper(&func_new, &func_new);
}
for func in SUPPORTED_FUNCTIONS.iter() {
let func_new = format!("{}(x)", func);
test_process_helper(&func_new, &func_new);
}
}
/// Tests to make sure hints are properly outputed based on input
#[test]
fn hints() {
let values = HashMap::from([
("", Hint::Single("x^2")),
("si", Hint::Many(&["n(", "nh(", "gnum("])),
("log", Hint::Many(&["2(", "10("])),
("cos", Hint::Many(&["(", "h("])),
("sin(", Hint::Single(")")),
("sqrt", Hint::Single("(")),
("ln(x)", Hint::None),
("ln(x)cos", Hint::Many(&["(", "h("])),
("ln(x)*cos", Hint::Many(&["(", "h("])),
("sin(cos", Hint::Many(&["(", "h("])),
]);
let values = HashMap::from([
("", Hint::Single("x^2")),
("si", Hint::Many(&["n(", "nh(", "gnum("])),
("log", Hint::Many(&["2(", "10("])),
("cos", Hint::Many(&["(", "h("])),
("sin(", Hint::Single(")")),
("sqrt", Hint::Single("(")),
("ln(x)", Hint::None),
("ln(x)cos", Hint::Many(&["(", "h("])),
("ln(x)*cos", Hint::Many(&["(", "h("])),
("sin(cos", Hint::Many(&["(", "h("])),
]);
for (key, value) in values {
println!("{} + {:?}", key, value);
assert_eq!(parsing::generate_hint(key), &value);
}
for (key, value) in values {
println!("{} + {:?}", key, value);
assert_eq!(parsing::generate_hint(key), &value);
}
}
#[test]
fn hint_to_string() {
let values = HashMap::from([
("x^2", Hint::Single("x^2")),
(
r#"["n(", "nh(", "gnum("]"#,
Hint::Many(&["n(", "nh(", "gnum("]),
),
(r#"["n("]"#, Hint::Many(&["n("])),
("None", Hint::None),
]);
let values = HashMap::from([
("x^2", Hint::Single("x^2")),
(
r#"["n(", "nh(", "gnum("]"#,
Hint::Many(&["n(", "nh(", "gnum("]),
),
(r#"["n("]"#, Hint::Many(&["n("])),
("None", Hint::None),
]);
for (key, value) in values {
assert_eq!(value.to_string(), key);
}
for (key, value) in values {
assert_eq!(value.to_string(), key);
}
}
#[test]
fn invalid_function() {
use parsing::SplitType;
use parsing::SplitType;
SUPPORTED_FUNCTIONS
.iter()
.flat_map(|func1| {
SUPPORTED_FUNCTIONS
.iter()
.map(|func2| func1.to_string() + func2)
.collect::<Vec<String>>()
})
.filter(|func| !SUPPORTED_FUNCTIONS.contains(&func.as_str()))
.for_each(|key| {
let split = parsing::split_function(&key, SplitType::Multiplication);
SUPPORTED_FUNCTIONS
.iter()
.flat_map(|func1| {
SUPPORTED_FUNCTIONS
.iter()
.map(|func2| func1.to_string() + func2)
.collect::<Vec<String>>()
})
.filter(|func| !SUPPORTED_FUNCTIONS.contains(&func.as_str()))
.for_each(|key| {
let split = parsing::split_function(&key, SplitType::Multiplication);
if split.len() != 1 {
panic!("failed: {} (len: {}, split: {:?})", key, split.len(), split);
}
if split.len() != 1 {
panic!("failed: {} (len: {}, split: {:?})", key, split.len(), split);
}
let generated_hint = parsing::generate_hint(&key);
if generated_hint.is_none() {
println!("success: {}", key);
} else {
panic!("failed: {} (Hint: '{}')", key, generated_hint);
}
});
let generated_hint = parsing::generate_hint(&key);
if generated_hint.is_none() {
println!("success: {}", key);
} else {
panic!("failed: {} (Hint: '{}')", key, generated_hint);
}
});
}
#[test]
fn split_function_multiplication() {
use parsing::SplitType;
use parsing::SplitType;
let values = HashMap::from([
("cos(x)", vec!["cos(x)"]),
("cos(", vec!["cos("]),
("cos(x)sin(x)", vec!["cos(x)", "sin(x)"]),
("aaaaaaaaaaa", vec!["aaaaaaaaaaa"]),
("emax(x)", vec!["e", "max(x)"]),
("x", vec!["x"]),
("xxx", vec!["x", "x", "x"]),
("sin(cos(x)x)", vec!["sin(cos(x)", "x)"]),
("sin(x)*cos(x)", vec!["sin(x)", "cos(x)"]),
("x*x", vec!["x", "x"]),
("10*10", vec!["10", "10"]),
("a1b2c3d4", vec!["a1b2c3d4"]),
("cos(sin(x)cos(x))", vec!["cos(sin(x)", "cos(x))"]),
("", Vec::new()),
]);
let values = HashMap::from([
("cos(x)", vec!["cos(x)"]),
("cos(", vec!["cos("]),
("cos(x)sin(x)", vec!["cos(x)", "sin(x)"]),
("aaaaaaaaaaa", vec!["aaaaaaaaaaa"]),
("emax(x)", vec!["e", "max(x)"]),
("x", vec!["x"]),
("xxx", vec!["x", "x", "x"]),
("sin(cos(x)x)", vec!["sin(cos(x)", "x)"]),
("sin(x)*cos(x)", vec!["sin(x)", "cos(x)"]),
("x*x", vec!["x", "x"]),
("10*10", vec!["10", "10"]),
("a1b2c3d4", vec!["a1b2c3d4"]),
("cos(sin(x)cos(x))", vec!["cos(sin(x)", "cos(x))"]),
("", Vec::new()),
]);
for (key, value) in values {
assert_eq!(
parsing::split_function(key, SplitType::Multiplication),
value
);
}
for (key, value) in values {
assert_eq!(
parsing::split_function(key, SplitType::Multiplication),
value
);
}
}
#[test]
fn split_function_terms() {
use parsing::SplitType;
use parsing::SplitType;
let values = HashMap::from([
(
"cos(sin(x)cos(x))",
vec!["cos(", "sin(", "x)", "cos(", "x))"],
),
("", Vec::new()),
]);
let values = HashMap::from([
(
"cos(sin(x)cos(x))",
vec!["cos(", "sin(", "x)", "cos(", "x))"],
),
("", Vec::new()),
]);
for (key, value) in values {
assert_eq!(parsing::split_function(key, SplitType::Term), value);
}
for (key, value) in values {
assert_eq!(parsing::split_function(key, SplitType::Term), value);
}
}
#[test]
fn hint_tests() {
{
let hint = Hint::None;
assert!(hint.is_none());
assert!(!hint.is_some());
assert!(!hint.is_single());
}
{
let hint = Hint::None;
assert!(hint.is_none());
assert!(!hint.is_some());
assert!(!hint.is_single());
}
{
let hint = Hint::Single("");
assert!(!hint.is_none());
assert!(hint.is_some());
assert!(hint.is_single());
}
{
let hint = Hint::Single("");
assert!(!hint.is_none());
assert!(hint.is_some());
assert!(hint.is_single());
}
{
let hint = Hint::Many(&[""]);
assert!(!hint.is_none());
assert!(hint.is_some());
assert!(!hint.is_single());
}
{
let hint = Hint::Many(&[""]);
assert!(!hint.is_none());
assert!(hint.is_some());
assert!(!hint.is_single());
}
}
#[test]
fn get_last_term() {
let values = HashMap::from([
("cos(x)", "x)"),
("cos(", "cos("),
("aaaaaaaaaaa", "aaaaaaaaaaa"),
("x", "x"),
("xxx", "x"),
("x*x", "x"),
("10*10", "10"),
("sin(cos", "cos"),
("exp(cos(exp(sin", "sin"),
]);
let values = HashMap::from([
("cos(x)", "x)"),
("cos(", "cos("),
("aaaaaaaaaaa", "aaaaaaaaaaa"),
("x", "x"),
("xxx", "x"),
("x*x", "x"),
("10*10", "10"),
("sin(cos", "cos"),
("exp(cos(exp(sin", "sin"),
]);
for (key, value) in values {
assert_eq!(
parsing::get_last_term(key.chars().collect::<Vec<char>>().as_slice()),
Some(value.to_owned())
);
}
for (key, value) in values {
assert_eq!(
parsing::get_last_term(key.chars().collect::<Vec<char>>().as_slice()),
Some(value.to_owned())
);
}
}
#[test]
fn hint_accessor() {
assert_eq!(Hint::Single("hint").many(), None);
assert_eq!(Hint::Single("hint").single(), Some("hint"));
assert_eq!(Hint::Single("hint").many(), None);
assert_eq!(Hint::Single("hint").single(), Some("hint"));
assert_eq!(Hint::Many(&["hint", "hint2"]).single(), None);
assert_eq!(
Hint::Many(&["hint", "hint2"]).many(),
Some(["hint", "hint2"].as_slice())
);
assert_eq!(Hint::Many(&["hint", "hint2"]).single(), None);
assert_eq!(
Hint::Many(&["hint", "hint2"]).many(),
Some(["hint", "hint2"].as_slice())
);
assert_eq!(Hint::None.single(), None);
assert_eq!(Hint::None.many(), None);
assert_eq!(Hint::None.single(), None);
assert_eq!(Hint::None.many(), None);
}