use crate::math_app::AppSettings; use crate::misc::{EguiHelper, newtons_method_helper, step_helper}; use egui::{Checkbox, Context}; use egui_plot::{Bar, BarChart, PlotPoint, PlotUi}; use epaint::Color32; use parsing::{AutoComplete, generate_hint}; use parsing::{BackingFunction, process_func_str}; use serde::{Deserialize, Deserializer, Serialize, Serializer, ser::SerializeStruct}; use std::{ fmt::{self, Debug}, hash::{Hash, Hasher}, }; /// Represents the possible variations of Riemann Sums #[derive(PartialEq, Eq, Debug, Copy, Clone, Default)] pub enum Riemann { #[default] Left, Middle, Right, } impl fmt::Display for Riemann { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self) } } /// `FunctionEntry` is a function that can calculate values, integrals, derivatives, etc etc #[derive(Clone)] pub struct FunctionEntry { /// The `BackingFunction` instance that is used to generate `f(x)`, `f'(x)`, and `f''(x)` function: BackingFunction, /// Stores a function string (that hasn't been processed via `process_func_str`) to display to the user pub raw_func_str: String, /// If calculating/displayingintegrals are enabled pub integral: bool, /// If displaying derivatives are enabled (note, they are still calculated for other purposes) pub derivative: bool, pub nth_derviative: bool, pub back_data: Vec, pub integral_data: Option<(Vec, f64)>, pub derivative_data: Vec, pub extrema_data: Vec, pub root_data: Vec, nth_derivative_data: Option>, pub autocomplete: AutoComplete<'static>, test_result: Option, curr_nth: usize, pub settings_opened: bool, } impl Hash for FunctionEntry { fn hash(&self, state: &mut H) { self.raw_func_str.hash(state); self.integral.hash(state); self.nth_derviative.hash(state); self.curr_nth.hash(state); self.settings_opened.hash(state); } } impl Serialize for FunctionEntry { fn serialize(&self, serializer: S) -> Result where S: Serializer, { let mut s = serializer.serialize_struct("FunctionEntry", 4)?; s.serialize_field("raw_func_str", &self.raw_func_str)?; s.serialize_field("integral", &self.integral)?; s.serialize_field("derivative", &self.derivative)?; s.serialize_field("curr_nth", &self.curr_nth)?; s.end() } } impl<'de> Deserialize<'de> for FunctionEntry { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { #[derive(Deserialize)] struct Helper { raw_func_str: String, integral: bool, derivative: bool, curr_nth: usize, } let helper = Helper::deserialize(deserializer)?; let mut new_func_entry = FunctionEntry::default(); let gen_func = BackingFunction::new(&helper.raw_func_str); match gen_func { Ok(func) => new_func_entry.function = func, Err(x) => new_func_entry.test_result = Some(x), } new_func_entry.autocomplete = AutoComplete { i: 0, hint: generate_hint(&helper.raw_func_str), string: helper.raw_func_str, }; new_func_entry.integral = helper.integral; new_func_entry.derivative = helper.derivative; new_func_entry.curr_nth = helper.curr_nth; Ok(new_func_entry) } } impl Default for FunctionEntry { /// Creates default FunctionEntry instance (which is empty) fn default() -> FunctionEntry { FunctionEntry { function: BackingFunction::default(), raw_func_str: String::new(), integral: false, derivative: false, nth_derviative: false, back_data: Vec::new(), integral_data: None, derivative_data: Vec::new(), extrema_data: Vec::new(), root_data: Vec::new(), nth_derivative_data: None, autocomplete: AutoComplete::EMPTY, test_result: None, curr_nth: 3, settings_opened: false, } } } impl FunctionEntry { pub const fn is_some(&self) -> bool { !self.function.is_none() } pub fn settings_window(&mut self, ctx: &Context) { let mut invalidate_nth = false; egui::Window::new(format!("Settings: {}", self.raw_func_str)) .open(&mut self.settings_opened) .default_pos([200.0, 200.0]) .resizable(false) .collapsible(false) .show(ctx, |ui| { ui.add(Checkbox::new( &mut self.nth_derviative, "Display Nth Derivative", )); if ui .add(egui::Slider::new(&mut self.curr_nth, 3..=5).text("Nth Derivative")) .changed() { invalidate_nth = true; } }); if invalidate_nth { self.function.generate_derivative(self.curr_nth); self.clear_nth(); } } /// Get function's cached test result pub fn get_test_result(&self) -> &Option { &self.test_result } /// Update function string and test it pub fn update_string(&mut self, raw_func_str: &str) { if raw_func_str == self.raw_func_str { return; } self.raw_func_str = raw_func_str.to_owned(); let processed_func = process_func_str(raw_func_str); let new_func_result = BackingFunction::new(&processed_func); match new_func_result { Ok(new_function) => { self.test_result = None; self.function = new_function; self.invalidate_whole(); } Err(error) => { self.test_result = Some(error); } } } /// Creates and does the math for creating all the rectangles under the graph fn integral_rectangles( &mut self, integral_min_x: f64, integral_max_x: f64, sum: Riemann, integral_num: usize, ) -> (Vec<(f64, f64)>, f64) { let step = (integral_max_x - integral_min_x) / (integral_num as f64); // let sum_func = self.get_sum_func(sum); let data2: Vec<(f64, f64)> = step_helper(integral_num, integral_min_x, step) .into_iter() .map(|x| { let step_offset = step.copysign(x); // store the offset here so it doesn't have to be calculated multiple times let x2: f64 = x + step_offset; let (left_x, right_x) = match x.is_sign_positive() { true => (x, x2), false => (x2, x), }; let y = match sum { Riemann::Left => self.function.get(0, left_x), Riemann::Right => self.function.get(0, right_x), Riemann::Middle => { (self.function.get(0, left_x) + self.function.get(0, right_x)) / 2.0 } }; (x + (step_offset / 2.0), y) }) .filter(|(_, y)| y.is_finite()) .collect(); let area = data2.iter().map(move |(_, y)| y * step).sum(); (data2, area) } /// Helps with processing newton's method depending on level of derivative fn newtons_method_helper( &mut self, threshold: f64, derivative_level: usize, range: &std::ops::Range, ) -> Vec { self.function.generate_derivative(derivative_level); self.function.generate_derivative(derivative_level + 1); let newtons_method_output: Vec = match derivative_level { 0 => newtons_method_helper( threshold, range, self.back_data.as_slice(), self.function.get_function_derivative(0), self.function.get_function_derivative(1), ), 1 => newtons_method_helper( threshold, range, self.derivative_data.as_slice(), self.function.get_function_derivative(1), self.function.get_function_derivative(2), ), _ => unreachable!(), }; newtons_method_output .into_iter() .map(|x| PlotPoint::new(x, self.function.get(0, x))) .collect() } /// Does the calculations and stores results in `self` pub fn calculate( &mut self, width_changed: bool, min_max_changed: bool, did_zoom: bool, settings: AppSettings, ) { if self.test_result.is_some() | self.function.is_none() { return; } let resolution = (settings.max_x - settings.min_x) / (settings.plot_width as f64); debug_assert!(resolution > 0.0); let resolution_iter = step_helper(settings.plot_width + 1, settings.min_x, resolution); // Makes sure proper arguments are passed when integral is enabled if self.integral && settings.integral_changed { self.clear_integral(); } if width_changed | min_max_changed | did_zoom { self.clear_back(); self.clear_derivative(); self.clear_nth(); } if self.back_data.is_empty() { let data: Vec = resolution_iter .clone() .into_iter() .map(|x| PlotPoint::new(x, self.function.get(0, x))) .collect(); debug_assert_eq!(data.len(), settings.plot_width + 1); self.back_data = data; } if self.derivative_data.is_empty() { self.function.generate_derivative(1); let data: Vec = resolution_iter .clone() .into_iter() .map(|x| PlotPoint::new(x, self.function.get(1, x))) .collect(); debug_assert_eq!(data.len(), settings.plot_width + 1); self.derivative_data = data; } if self.nth_derviative && self.nth_derivative_data.is_none() { let data: Vec = resolution_iter .into_iter() .map(|x| PlotPoint::new(x, self.function.get(self.curr_nth, x))) .collect(); debug_assert_eq!(data.len(), settings.plot_width + 1); self.nth_derivative_data = Some(data); } if self.integral { if self.integral_data.is_none() { let (data, area) = self.integral_rectangles( settings.integral_min_x, settings.integral_max_x, settings.riemann_sum, settings.integral_num, ); self.integral_data = Some(( data.into_iter().map(|(x, y)| Bar::new(x, y)).collect(), area, )); } } else { self.clear_integral(); } let threshold: f64 = resolution / 2.0; let x_range = settings.min_x..settings.max_x; // Calculates extrema if settings.do_extrema && (min_max_changed | self.extrema_data.is_empty()) { self.extrema_data = self.newtons_method_helper(threshold, 1, &x_range); } // Calculates roots if settings.do_roots && (min_max_changed | self.root_data.is_empty()) { self.root_data = self.newtons_method_helper(threshold, 0, &x_range); } } /// Displays the function's output on PlotUI `plot_ui` with settings `settings`. /// Returns an `Option` of the calculated integral. pub fn display( &self, plot_ui: &mut PlotUi, settings: &AppSettings, main_plot_color: Color32, ) -> Option { if self.test_result.is_some() | self.function.is_none() { return None; } let integral_step = (settings.integral_max_x - settings.integral_min_x) / (settings.integral_num as f64); debug_assert!(integral_step > 0.0); let step = (settings.max_x - settings.min_x) / (settings.plot_width as f64); debug_assert!(step > 0.0); // Plot back data if !self.back_data.is_empty() { if self.integral && (step >= integral_step) { plot_ui.line( self.back_data .iter() .filter(|value| { (value.x > settings.integral_min_x) && (settings.integral_max_x > value.x) }) .cloned() .collect::>() .to_line() .stroke(epaint::Stroke::NONE) .color(Color32::from_rgb(4, 4, 255)) .fill(0.0), ); } plot_ui.line( self.back_data .clone() .to_line() .stroke(egui::Stroke::new(4.0, main_plot_color)), ); } // Plot derivative data if self.derivative && !self.derivative_data.is_empty() { plot_ui.line(self.derivative_data.clone().to_line().color(Color32::GREEN)); } // Plot extrema points if settings.do_extrema && !self.extrema_data.is_empty() { plot_ui.points( self.extrema_data .clone() .to_points() .color(Color32::YELLOW) .radius(5.0), // Radius of points of Extrema ); } // Plot roots points if settings.do_roots && !self.root_data.is_empty() { plot_ui.points( self.root_data .clone() .to_points() .color(Color32::LIGHT_BLUE) .radius(5.0), // Radius of points of Roots ); } if self.nth_derviative && let Some(ref nth_derviative) = self.nth_derivative_data { plot_ui.line(nth_derviative.clone().to_line().color(Color32::DARK_RED)); } // Plot integral data match &self.integral_data { Some(integral_data) => { if integral_step > step { plot_ui.bar_chart( BarChart::new("integral bar chart", integral_data.0.clone()) .color(Color32::BLUE) .width(integral_step), ); } // return value rounded to 8 decimal places Some(emath::round_to_decimals(integral_data.1, 8)) } None => None, } } /// Invalidate entire cache fn invalidate_whole(&mut self) { self.clear_back(); self.clear_integral(); self.clear_derivative(); self.clear_nth(); self.clear_extrema(); self.clear_roots(); } /// Invalidate `back` data #[inline] fn clear_back(&mut self) { self.back_data.clear(); } /// Invalidate Integral data #[inline] fn clear_integral(&mut self) { self.integral_data = None; } /// Invalidate Derivative data #[inline] fn clear_derivative(&mut self) { self.derivative_data.clear(); } /// Invalidates `n`th derivative data #[inline] fn clear_nth(&mut self) { self.nth_derivative_data = None } /// Invalidate extrema data #[inline] fn clear_extrema(&mut self) { self.extrema_data.clear() } /// Invalidate root data #[inline] fn clear_roots(&mut self) { self.root_data.clear() } }