#![allow(clippy::too_many_arguments)] // Clippy, shut use crate::math_app::AppSettings; use crate::misc::*; use crate::parsing::{process_func_str, BackingFunction}; use crate::widgets::AutoComplete; use eframe::{egui, epaint}; use egui::{ plot::{BarChart, PlotUi, Value}, widgets::plot::Bar, }; use epaint::Color32; use std::fmt::{self, Debug}; #[cfg(threading)] use rayon::iter::ParallelIterator; /// Represents the possible variations of Riemann Sums #[derive(PartialEq, Debug, Copy, Clone)] pub enum Riemann { Left, Middle, Right, } impl fmt::Display for Riemann { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self) } } lazy_static::lazy_static! { /// Represents a "default" instance of `FunctionEntry` pub static ref DEFAULT_FUNCTION_ENTRY: FunctionEntry = FunctionEntry::default(); } /// `FunctionEntry` is a function that can calculate values, integrals, /// derivatives, etc etc #[derive(Clone)] pub struct FunctionEntry { /// The `BackingFunction` instance that is used to generate `f(x)`, `f'(x)`, and `f''(x)` function: BackingFunction, /// Stores a function string (that hasn't been processed via `process_func_str`) to display to the user raw_func_str: String, /// Minimum and Maximum values of what do display min_x: f64, max_x: f64, /// If calculating/displayingintegrals are enabled pub integral: bool, /// If displaying derivatives are enabled (note, they are still calculated for other purposes) pub derivative: bool, back_data: Vec, integral_data: Option<(Vec, f64)>, derivative_data: Vec, extrema_data: Vec, roots_data: Vec, autocomplete: AutoComplete<'static>, test_result: Option, } impl Default for FunctionEntry { /// Creates default FunctionEntry instance (which is empty) fn default() -> FunctionEntry { FunctionEntry { function: BackingFunction::new(""), raw_func_str: String::new(), min_x: -1.0, max_x: 1.0, integral: false, derivative: false, back_data: Vec::new(), integral_data: None, derivative_data: Vec::new(), extrema_data: Vec::new(), roots_data: Vec::new(), autocomplete: AutoComplete::default(), test_result: None, } } } impl FunctionEntry { /// Create autocomplete ui and handle user input pub fn auto_complete(&mut self, ui: &mut egui::Ui, i: i32) -> (bool, bool, Option) { let (output_string, in_focus) = self.autocomplete.ui(ui, self.raw_func_str.clone(), i); let changed = output_string != self.raw_func_str; if changed { self.update_string(&output_string); } (in_focus, changed, self.get_test_result()) } /// Get function's cached test result pub fn get_test_result(&self) -> Option { self.test_result.clone() } /// Update function string and test it fn update_string(&mut self, raw_func_str: &str) { let processed_func = process_func_str(raw_func_str); let output = crate::parsing::test_func(&processed_func); self.raw_func_str = raw_func_str.to_string(); if output.is_some() { self.test_result = output; return; } else { self.test_result = None; } self.function = BackingFunction::new(&processed_func); self.invalidate_whole(); } /// Get function that can be used to calculate integral based on Riemann Sum type fn get_sum_func(&self, sum: Riemann) -> FunctionHelper { match sum { Riemann::Left => { FunctionHelper::new(|left_x: f64, _: f64| -> f64 { self.function.get(left_x) }) } Riemann::Right => { FunctionHelper::new(|_: f64, right_x: f64| -> f64 { self.function.get(right_x) }) } Riemann::Middle => FunctionHelper::new(|left_x: f64, right_x: f64| -> f64 { (self.function.get(left_x) + self.function.get(right_x)) / 2.0 }), } } /// Creates and does the math for creating all the rectangles under the graph fn integral_rectangles( &self, integral_min_x: &f64, integral_max_x: &f64, sum: &Riemann, integral_num: &usize, ) -> (Vec<(f64, f64)>, f64) { if integral_min_x.is_nan() { panic!("integral_min_x is NaN") } else if integral_max_x.is_nan() { panic!("integral_max_x is NaN") } let step = (integral_min_x - integral_max_x).abs() / (*integral_num as f64); let sum_func = self.get_sum_func(*sum); let data2: Vec<(f64, f64)> = dyn_iter(&step_helper(*integral_num, integral_min_x, &step)) .map(|x| { let step_offset = step * x.signum(); // store the offset here so it doesn't have to be calculated multiple times let x2: f64 = x + step_offset; let (left_x, right_x) = match x.is_sign_positive() { true => (*x, x2), false => (x2, *x), }; let y = sum_func.get(left_x, right_x); (x + (step_offset / 2.0), y) }) .filter(|(_, y)| !y.is_nan()) .collect(); let area = data2.iter().map(|(_, y)| y * step).sum(); (data2, area) } /// Helps with processing newton's method depending on level of derivative fn newtons_method_helper(&self, threshold: &f64, derivative_level: usize) -> Vec { let range = self.min_x..self.max_x; let newtons_method_output: Vec = match derivative_level { 0 => newtons_method_helper( threshold, &range, self.back_data.as_slice(), &|x: f64| self.function.get(x), &|x: f64| self.function.get_derivative_1(x), ), 1 => newtons_method_helper( threshold, &range, self.derivative_data.as_slice(), &|x: f64| self.function.get_derivative_1(x), &|x: f64| self.function.get_derivative_2(x), ), _ => unreachable!(), }; dyn_iter(&newtons_method_output) .map(|x| Value::new(*x, self.function.get(*x))) .collect() } /// Does the calculations and stores results in `self` pub fn calculate( &mut self, min_x: &f64, max_x: &f64, width_changed: bool, settings: &AppSettings, ) { if self.test_result.is_some() { return; } let resolution: f64 = settings.plot_width as f64 / (max_x.abs() + min_x.abs()); let resolution_iter = resolution_helper(&settings.plot_width + 1, min_x, &resolution); // Makes sure proper arguments are passed when integral is enabled if self.integral && settings.integral_changed { self.invalidate_integral(); } let mut partial_regen = false; let min_max_changed = (min_x != &self.min_x) | (max_x != &self.max_x); let derivative_required = settings.do_extrema | self.derivative; self.min_x = *min_x; self.max_x = *max_x; if width_changed { self.invalidate_back(); self.invalidate_derivative(); } else if min_max_changed && !self.back_data.is_empty() { partial_regen = true; let x_data: SteppedVector = self .back_data .iter() .map(|ele| ele.x) .collect::>() .into(); let back_data: Vec = dyn_iter(&resolution_iter) .map(|x| { if let Some(i) = x_data.get_index(x) { self.back_data[i] } else { Value::new(*x, self.function.get(*x)) } }) .collect(); debug_assert_eq!(back_data.len(), settings.plot_width + 1); self.back_data = back_data; if derivative_required { let new_derivative_data: Vec = dyn_iter(&resolution_iter) .map(|x| { if let Some(i) = x_data.get_index(x) { self.derivative_data[i] } else { Value::new(*x, self.function.get_derivative_1(*x)) } }) .collect(); debug_assert_eq!(new_derivative_data.len(), settings.plot_width + 1); self.derivative_data = new_derivative_data; } else { self.invalidate_derivative(); } } else { self.invalidate_back(); self.invalidate_derivative(); } let threshold: f64 = resolution / 2.0; if !partial_regen { if self.back_data.is_empty() { let data: Vec = dyn_iter(&resolution_iter) .map(|x| Value::new(*x, self.function.get(*x))) .collect(); debug_assert_eq!(data.len(), settings.plot_width + 1); self.back_data = data; } if derivative_required && self.derivative_data.is_empty() { let data: Vec = dyn_iter(&resolution_iter) .map(|x| Value::new(*x, self.function.get_derivative_1(*x))) .collect(); debug_assert_eq!(data.len(), settings.plot_width + 1); self.derivative_data = data; } } if self.integral { if self.integral_data.is_none() { let (data, area) = self.integral_rectangles( &settings.integral_min_x, &settings.integral_max_x, &settings.riemann_sum, &settings.integral_num, ); self.integral_data = Some((data.iter().map(|(x, y)| Bar::new(*x, *y)).collect(), area)); } } else { self.invalidate_integral(); } // Calculates extrema if settings.do_extrema && (min_max_changed | self.extrema_data.is_empty()) { self.extrema_data = self.newtons_method_helper(&threshold, 1); } // Calculates roots if settings.do_roots && (min_max_changed | self.roots_data.is_empty()) { self.roots_data = self.newtons_method_helper(&threshold, 0); } } /// Displays the function's output on PlotUI `plot_ui` with settings `settings`. /// Returns an `Option` of the calculated integral. pub fn display( &self, plot_ui: &mut PlotUi, settings: &AppSettings, main_plot_color: Color32, ) -> Option { if self.test_result.is_some() { return None; } let derivative_str = self.function.get_derivative_str(); let step = (settings.integral_min_x - settings.integral_max_x).abs() / (settings.integral_num as f64); // Plot back data if !self.back_data.is_empty() { plot_ui.line( self.back_data .to_line() .color(main_plot_color) .name(&self.raw_func_str), ); } // Plot derivative data if self.derivative && !self.derivative_data.is_empty() { plot_ui.line( self.derivative_data .to_line() .color(Color32::GREEN) .name(derivative_str), ); } // Plot extrema points if settings.do_extrema { plot_ui.points( self.extrema_data .to_points() .color(Color32::YELLOW) .name("Extrema") .radius(5.0), // Radius of points of Extrema ); } // Plot roots points if settings.do_roots { plot_ui.points( self.roots_data .to_points() .color(Color32::LIGHT_BLUE) .name("Root") .radius(5.0), // Radius of points of Roots ); } // Plot integral data match &self.integral_data { Some(integral_data) => { plot_ui.bar_chart( BarChart::new(integral_data.0.clone()) .color(Color32::BLUE) .width(step), ); // return value rounded to 8 decimal places Some(crate::misc::decimal_round(integral_data.1, 8)) } _ => None, } } /// Invalidate entire cache pub fn invalidate_whole(&mut self) { self.invalidate_back(); self.invalidate_integral(); self.invalidate_derivative(); self.extrema_data.clear(); self.roots_data.clear(); } /// Invalidate `back` data pub fn invalidate_back(&mut self) { self.back_data.clear(); } /// Invalidate Integral data pub fn invalidate_integral(&mut self) { self.integral_data = None; } /// Invalidate Derivative data pub fn invalidate_derivative(&mut self) { self.derivative_data.clear(); } /// Runs asserts to make sure everything is the expected value #[cfg(test)] pub fn tests( &mut self, settings: AppSettings, back_target: Vec<(f64, f64)>, derivative_target: Vec<(f64, f64)>, area_target: f64, min_x: f64, max_x: f64, ) { { self.calculate(&min_x, &max_x, true, &settings); let back_target = back_target; assert!(!self.back_data.is_empty()); assert_eq!(self.back_data.len(), settings.plot_width + 1); let back_vec_tuple = self.back_data.to_tuple(); assert_eq!(back_vec_tuple, back_target); assert!(self.integral); assert!(self.derivative); assert_eq!(!self.roots_data.is_empty(), settings.do_roots); assert_eq!(!self.extrema_data.is_empty(), settings.do_extrema); assert!(!self.derivative_data.is_empty()); assert!(self.integral_data.is_some()); assert_eq!(self.derivative_data.to_tuple(), derivative_target); assert_eq!(self.integral_data.clone().unwrap().1, area_target); } { self.update_string("sin(x)"); assert!(self.get_test_result().is_none()); assert_eq!(&self.raw_func_str, "sin(x)"); self.integral = false; self.derivative = false; assert!(!self.integral); assert!(!self.derivative); assert!(self.back_data.is_empty()); assert!(self.integral_data.is_none()); assert!(self.roots_data.is_empty()); assert!(self.extrema_data.is_empty()); assert!(self.derivative_data.is_empty()); self.calculate(&min_x, &max_x, true, &settings); assert!(!self.back_data.is_empty()); assert!(self.integral_data.is_none()); assert!(self.roots_data.is_empty()); assert!(self.extrema_data.is_empty()); assert!(self.derivative_data.is_empty()); } } } #[cfg(test)] mod tests { use super::*; fn app_settings_constructor( sum: Riemann, integral_min_x: f64, integral_max_x: f64, pixel_width: usize, integral_num: usize, ) -> AppSettings { crate::math_app::AppSettings { riemann_sum: sum, integral_min_x, integral_max_x, integral_changed: true, integral_num, do_extrema: false, do_roots: false, plot_width: pixel_width, } } static BACK_TARGET: [(f64, f64); 11] = [ (-1.0, 1.0), (-0.8, 0.6400000000000001), (-0.6, 0.36), (-0.4, 0.16000000000000003), (-0.19999999999999996, 0.03999999999999998), (0.0, 0.0), (0.19999999999999996, 0.03999999999999998), (0.3999999999999999, 0.15999999999999992), (0.6000000000000001, 0.3600000000000001), (0.8, 0.6400000000000001), (1.0, 1.0), ]; static DERIVATIVE_TARGET: [(f64, f64); 11] = [ (-1.0, -2.0), (-0.8, -1.6), (-0.6, -1.2), (-0.4, -0.8), (-0.19999999999999996, -0.3999999999999999), (0.0, 0.0), (0.19999999999999996, 0.3999999999999999), (0.3999999999999999, 0.7999999999999998), (0.6000000000000001, 1.2000000000000002), (0.8, 1.6), (1.0, 2.0), ]; fn do_test(sum: Riemann, area_target: f64) { let settings = app_settings_constructor(sum, -1.0, 1.0, 10, 10); let mut function = FunctionEntry::default(); function.update_string("x^2"); function.integral = true; function.derivative = true; function.tests( settings, BACK_TARGET.to_vec(), DERIVATIVE_TARGET.to_vec(), area_target, -1.0, 1.0, ); } #[test] fn function_entry_test() { do_test(Riemann::Left, 0.9600000000000001); do_test(Riemann::Middle, 0.92); do_test(Riemann::Right, 0.8800000000000001); } }