YTBN-Graphing-Software/src/function_entry.rs
2022-05-25 11:32:56 -04:00

784 lines
21 KiB
Rust

use crate::math_app::AppSettings;
use crate::misc::*;
use egui::{
plot::{BarChart, PlotUi, Value},
widgets::plot::Bar,
Checkbox, Context,
};
use epaint::Color32;
use parsing::{generate_hint, AutoComplete};
use parsing::{process_func_str, BackingFunction};
use serde::{ser::SerializeStruct, Deserialize, Deserializer, Serialize, Serializer};
use std::{
fmt::{self, Debug},
intrinsics::assume,
};
/// Represents the possible variations of Riemann Sums
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum Riemann {
Left,
Middle,
Right,
}
impl fmt::Display for Riemann {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self) }
}
impl const Default for Riemann {
fn default() -> Riemann { Riemann::Left }
}
/// `FunctionEntry` is a function that can calculate values, integrals, derivatives, etc etc
#[derive(PartialEq, Clone)]
pub struct FunctionEntry {
/// The `BackingFunction` instance that is used to generate `f(x)`, `f'(x)`, and `f''(x)`
function: BackingFunction,
/// Stores a function string (that hasn't been processed via `process_func_str`) to display to the user
raw_func_str: String,
/// If calculating/displayingintegrals are enabled
pub integral: bool,
/// If displaying derivatives are enabled (note, they are still calculated for other purposes)
pub derivative: bool,
pub nth_derviative: bool,
back_data: Vec<Value>,
integral_data: Option<(Vec<Bar>, f64)>,
derivative_data: Vec<Value>,
extrema_data: Vec<Value>,
root_data: Vec<Value>,
nth_derivative_data: Option<Vec<Value>>,
pub autocomplete: AutoComplete<'static>,
test_result: Option<String>,
curr_nth: usize,
pub settings_opened: bool,
}
impl Serialize for FunctionEntry {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut s = serializer.serialize_struct("FunctionEntry", 4)?;
s.serialize_field("raw_func_str", &self.raw_func_str)?;
s.serialize_field("integral", &self.integral)?;
s.serialize_field("derivative", &self.derivative)?;
s.serialize_field("curr_nth", &self.curr_nth)?;
s.end()
}
}
impl<'de> Deserialize<'de> for FunctionEntry {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
#[derive(Deserialize)]
struct Helper {
raw_func_str: String,
integral: bool,
derivative: bool,
curr_nth: usize,
}
let helper = Helper::deserialize(deserializer)?;
let mut new_func_entry = FunctionEntry::EMPTY;
let gen_func = BackingFunction::new(&helper.raw_func_str);
match gen_func {
Ok(func) => new_func_entry.function = func,
Err(x) => new_func_entry.test_result = Some(x),
}
new_func_entry.autocomplete = AutoComplete {
i: 0,
hint: generate_hint(&helper.raw_func_str),
string: helper.raw_func_str,
};
new_func_entry.integral = helper.integral;
new_func_entry.derivative = helper.derivative;
new_func_entry.curr_nth = helper.curr_nth;
Ok(new_func_entry)
}
}
impl const Default for FunctionEntry {
/// Creates default FunctionEntry instance (which is empty)
fn default() -> FunctionEntry { FunctionEntry::EMPTY }
}
impl FunctionEntry {
pub const EMPTY: FunctionEntry = FunctionEntry {
function: BackingFunction::EMPTY,
raw_func_str: String::new(),
integral: false,
derivative: false,
nth_derviative: false,
back_data: Vec::new(),
integral_data: None,
derivative_data: Vec::new(),
extrema_data: Vec::new(),
root_data: Vec::new(),
nth_derivative_data: None,
autocomplete: AutoComplete::default(),
test_result: None,
curr_nth: 3,
settings_opened: false,
};
pub const fn is_some(&self) -> bool { !self.function.is_none() }
pub fn settings_window(&mut self, ctx: &Context) {
let mut invalidate_nth = false;
egui::Window::new(format!("Settings: {}", self.raw_func_str))
.open(&mut self.settings_opened)
.default_pos([200.0, 200.0])
.resizable(false)
.collapsible(false)
.show(ctx, |ui| {
ui.add(Checkbox::new(
&mut self.nth_derviative,
"Display Nth Derivative",
));
if ui
.add(egui::Slider::new(&mut self.curr_nth, 3..=5).text("Nth Derivative"))
.changed()
{
invalidate_nth = true;
}
});
if invalidate_nth {
self.clear_nth();
}
}
/// Get function's cached test result
pub fn get_test_result(&self) -> &Option<String> { &self.test_result }
/// Update function string and test it
pub fn update_string(&mut self, raw_func_str: &str) {
if raw_func_str == self.raw_func_str {
return;
}
self.raw_func_str = raw_func_str.to_owned();
let processed_func = process_func_str(raw_func_str);
let new_func_result = BackingFunction::new(&processed_func);
match new_func_result {
Ok(new_function) => {
self.test_result = None;
self.function = new_function;
self.invalidate_whole();
}
Err(error) => {
self.test_result = Some(error);
}
}
}
/// Creates and does the math for creating all the rectangles under the graph
fn integral_rectangles(
&self, integral_min_x: f64, integral_max_x: f64, sum: Riemann, integral_num: usize,
) -> (Vec<(f64, f64)>, f64) {
let step = (integral_max_x - integral_min_x) / (integral_num as f64);
// let sum_func = self.get_sum_func(sum);
let data2: Vec<(f64, f64)> = step_helper(integral_num, integral_min_x, step)
.into_iter()
.map(|x| {
let step_offset = step.copysign(x); // store the offset here so it doesn't have to be calculated multiple times
let x2: f64 = x + step_offset;
let (left_x, right_x) = match x.is_sign_positive() {
true => (x, x2),
false => (x2, x),
};
let y = match sum {
Riemann::Left => self.function.get(left_x),
Riemann::Right => self.function.get(right_x),
Riemann::Middle => {
(self.function.get(left_x) + self.function.get(right_x)) / 2.0
}
};
(x + (step_offset / 2.0), y)
})
.filter(|(_, y)| y.is_finite())
.collect();
let area = data2.iter().map(move |(_, y)| y * step).sum();
(data2, area)
}
/// Helps with processing newton's method depending on level of derivative
fn newtons_method_helper(
&self, threshold: f64, derivative_level: usize, range: &std::ops::Range<f64>,
) -> Vec<Value> {
let newtons_method_output: Vec<f64> = match derivative_level {
0 => newtons_method_helper(
threshold,
range,
self.back_data.as_slice(),
&|x: f64| self.function.get(x),
&|x: f64| self.function.get_derivative_1(x),
),
1 => newtons_method_helper(
threshold,
range,
self.derivative_data.as_slice(),
&|x: f64| self.function.get_derivative_1(x),
&|x: f64| self.function.get_derivative_2(x),
),
_ => unreachable!(),
};
newtons_method_output
.into_iter()
.map(|x| Value::new(x, self.function.get(x)))
.collect()
}
/// Does the calculations and stores results in `self`
pub fn calculate(
&mut self, width_changed: bool, min_max_changed: bool, did_zoom: bool,
settings: &AppSettings,
) {
if self.test_result.is_some() {
return;
}
let resolution = (settings.max_x - settings.min_x) / (settings.plot_width as f64);
debug_assert!(resolution > 0.0);
let resolution_iter = step_helper(settings.plot_width + 1, settings.min_x, resolution);
unsafe { assume(!resolution_iter.is_empty()) }
// Makes sure proper arguments are passed when integral is enabled
if self.integral && settings.integral_changed {
self.clear_integral();
}
let mut partial_regen = false;
if width_changed {
self.clear_back();
self.clear_derivative();
} else if min_max_changed && !self.back_data.is_empty() && !did_zoom && {
let prev_min = unsafe { self.back_data.first().unwrap_unchecked() }.x;
let prev_max = unsafe { self.back_data.first().unwrap_unchecked() }.x;
(settings.min_x <= prev_max) && (settings.max_x >= prev_min)
} {
partial_regen = true;
let prev_min = unsafe { self.back_data.first().unwrap_unchecked() }.x;
if prev_min < settings.min_x {
let min_i = ((settings.min_x - prev_min) as f64 / resolution) as usize;
{
let (cut_data, _) = self.back_data.split_at(min_i);
let new_data: Vec<Value> = (min_i..=settings.plot_width)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get(x)))
.collect();
self.back_data = [cut_data, &new_data].concat();
debug_assert_eq!(self.back_data.len(), settings.plot_width + 1);
}
{
let (cut_data, _) = self.derivative_data.split_at(min_i);
let new_data: Vec<Value> = (min_i..=settings.plot_width)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_derivative_1(x)))
.collect();
self.derivative_data = [cut_data, &new_data].concat();
debug_assert_eq!(self.derivative_data.len(), settings.plot_width + 1);
}
if self.nth_derviative && let Some(data) = self.nth_derivative_data.as_mut() {
let (cut_data, _) = data.split_at(min_i);
let new_data: Vec<Value> = (min_i..=settings.plot_width)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_nth_derivative(self.curr_nth, x)))
.collect();
*data = [cut_data, &new_data].concat();
debug_assert_eq!(data.len(), settings.plot_width + 1);
}
} else {
// TODO: fix weird values on the far right when scrolling fast left-ward
let min_i = ((settings.max_x - prev_min) as f64 / resolution) as usize;
let min_i_2 = settings.plot_width - min_i;
{
let (_, cut_data) = self.back_data.split_at(min_i);
let new_data_1: Vec<Value> = (0..min_i)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get(x)))
.collect();
let new_data_2: Vec<Value> = (min_i..min_i_2)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get(x)))
.collect();
self.back_data = [&new_data_1, cut_data, &new_data_2].concat();
debug_assert_eq!(self.back_data.len(), settings.plot_width + 1);
}
{
let (_, cut_data) = self.derivative_data.split_at(min_i);
let new_data_1: Vec<Value> = (0..min_i)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_derivative_1(x)))
.collect();
let new_data_2: Vec<Value> = (min_i..min_i_2)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_derivative_1(x)))
.collect();
self.derivative_data = [&new_data_1, cut_data, &new_data_2].concat();
debug_assert_eq!(self.derivative_data.len(), settings.plot_width + 1);
}
if self.nth_derviative && let Some(data) = self.nth_derivative_data.as_mut() {
let (_, cut_data) = data.split_at(min_i);
let new_data_1: Vec<Value> = (0..min_i)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_nth_derivative(self.curr_nth, x)))
.collect();
let new_data_2: Vec<Value> = (min_i..min_i_2)
.map(move |x: usize| (x as f64 * resolution) + settings.min_x)
.map(|x: f64| Value::new(x, self.function.get_nth_derivative(self.curr_nth, x)))
.collect();
*data = [&new_data_1, cut_data, &new_data_2].concat();
debug_assert_eq!(data.len(), settings.plot_width + 1);
}
}
} else {
self.clear_back();
self.clear_derivative();
}
if !partial_regen {
if self.back_data.is_empty() {
let data: Vec<Value> = resolution_iter
.clone()
.into_iter()
.map(|x| Value::new(x, self.function.get(x)))
.collect();
debug_assert_eq!(data.len(), settings.plot_width + 1);
self.back_data = data;
}
if self.derivative_data.is_empty() {
let data: Vec<Value> = resolution_iter
.clone()
.into_iter()
.map(|x| Value::new(x, self.function.get_derivative_1(x)))
.collect();
debug_assert_eq!(data.len(), settings.plot_width + 1);
self.derivative_data = data;
}
if self.nth_derviative && self.nth_derivative_data.is_none() {
let data: Vec<Value> = resolution_iter
.into_iter()
.map(|x| Value::new(x, self.function.get_nth_derivative(self.curr_nth, x)))
.collect();
debug_assert_eq!(data.len(), settings.plot_width + 1);
self.nth_derivative_data = Some(data);
}
}
if self.integral {
if self.integral_data.is_none() {
let (data, area) = self.integral_rectangles(
settings.integral_min_x,
settings.integral_max_x,
settings.riemann_sum,
settings.integral_num,
);
self.integral_data = Some((
data.into_iter().map(|(x, y)| Bar::new(x, y)).collect(),
area,
));
}
} else {
self.clear_integral();
}
let threshold: f64 = resolution / 2.0;
let x_range = settings.min_x..settings.max_x;
// Calculates extrema
if settings.do_extrema && (min_max_changed | self.extrema_data.is_empty()) {
self.extrema_data = self.newtons_method_helper(threshold, 1, &x_range);
}
// Calculates roots
if settings.do_roots && (min_max_changed | self.root_data.is_empty()) {
self.root_data = self.newtons_method_helper(threshold, 0, &x_range);
}
}
/// Displays the function's output on PlotUI `plot_ui` with settings `settings`.
/// Returns an `Option<f64>` of the calculated integral.
pub fn display(
&self, plot_ui: &mut PlotUi, settings: &AppSettings, main_plot_color: Color32,
) -> Option<f64> {
if self.test_result.is_some() | self.function.is_none() {
return None;
}
let integral_step =
(settings.integral_max_x - settings.integral_min_x) / (settings.integral_num as f64);
debug_assert!(integral_step > 0.0);
let step = (settings.max_x - settings.min_x) / (settings.plot_width as f64);
debug_assert!(step > 0.0);
// Plot back data
if !self.back_data.is_empty() {
if self.integral && (step >= integral_step) {
plot_ui.line(
self.back_data
.iter()
.filter(|value| {
(value.x > settings.integral_min_x)
&& (settings.integral_max_x > value.x)
})
.cloned()
.collect::<Vec<Value>>()
.to_line()
.stroke(epaint::Stroke::none())
.color(Color32::from_rgb(4, 4, 255))
.fill(0.0),
);
}
plot_ui.line(
self.back_data
.clone()
.to_line()
.stroke(egui::Stroke::new(2.0, main_plot_color)),
);
}
// Plot derivative data
if self.derivative && !self.derivative_data.is_empty() {
plot_ui.line(self.derivative_data.clone().to_line().color(Color32::GREEN));
}
// Plot extrema points
if settings.do_extrema && !self.extrema_data.is_empty() {
plot_ui.points(
self.extrema_data
.clone()
.to_points()
.color(Color32::YELLOW)
.radius(5.0), // Radius of points of Extrema
);
}
// Plot roots points
if settings.do_roots && !self.root_data.is_empty() {
plot_ui.points(
self.root_data
.clone()
.to_points()
.color(Color32::LIGHT_BLUE)
.radius(5.0), // Radius of points of Roots
);
}
if self.nth_derviative && let Some(ref nth_derviative) = self.nth_derivative_data {
plot_ui.line(
nth_derviative.clone()
.to_line()
.color(Color32::DARK_RED)
);
}
// Plot integral data
match &self.integral_data {
Some(integral_data) => {
if integral_step > step {
plot_ui.bar_chart(
BarChart::new(integral_data.0.clone())
.color(Color32::BLUE)
.width(integral_step),
);
}
// return value rounded to 8 decimal places
Some(emath::round_to_decimals(integral_data.1, 8))
}
None => None,
}
}
/// Invalidate entire cache
fn invalidate_whole(&mut self) {
self.clear_back();
self.clear_integral();
self.clear_derivative();
self.clear_nth();
self.clear_extrema();
self.clear_roots();
}
/// Invalidate `back` data
#[inline]
fn clear_back(&mut self) { self.back_data.clear(); }
/// Invalidate Integral data
#[inline]
fn clear_integral(&mut self) { self.integral_data = None; }
/// Invalidate Derivative data
#[inline]
fn clear_derivative(&mut self) { self.derivative_data.clear(); }
/// Invalidates `n`th derivative data
#[inline]
fn clear_nth(&mut self) { self.nth_derivative_data = None }
/// Invalidate extrema data
#[inline]
fn clear_extrema(&mut self) { self.extrema_data.clear() }
/// Invalidate root data
#[inline]
fn clear_roots(&mut self) { self.root_data.clear() }
/// Runs asserts to make sure everything is the expected value
#[allow(dead_code)]
pub fn tests(
&mut self, settings: AppSettings, back_target: Vec<(f64, f64)>,
derivative_target: Vec<(f64, f64)>, area_target: f64,
) {
let mut settings = settings;
{
self.calculate(true, true, false, &settings);
assert!(!self.back_data.is_empty());
assert_eq!(self.back_data.len(), settings.plot_width + 1);
assert!(self.integral);
assert!(self.derivative);
assert_eq!(!self.root_data.is_empty(), settings.do_roots);
assert_eq!(!self.extrema_data.is_empty(), settings.do_extrema);
assert!(!self.derivative_data.is_empty());
assert!(self.integral_data.is_some());
assert_eq!(self.integral_data.clone().unwrap().1, area_target);
let a = self.derivative_data.clone().to_tuple();
assert_eq!(a.len(), derivative_target.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, derivative_target[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(
a[i].1 as f32,
derivative_target[i].1 as f32,
f32::EPSILON,
) {
panic!("Expected: {:?}\nGot: {:?}", a, derivative_target);
}
}
let a_1 = self.back_data.clone().to_tuple();
assert_eq!(a_1.len(), back_target.len());
assert_eq!(a.len(), back_target.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, back_target[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, back_target[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, back_target);
}
}
}
{
settings.min_x += 1.0;
settings.max_x += 1.0;
self.calculate(true, true, false, &settings);
let a = self
.derivative_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = derivative_target
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
let a_1 = self
.back_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = back_target
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
{
settings.min_x -= 2.0;
settings.max_x -= 2.0;
self.calculate(true, true, false, &settings);
let a = self
.derivative_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = derivative_target
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a, b);
}
}
let a_1 = self
.back_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = back_target
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", a_1, b_1);
}
}
}
{
self.update_string("sin(x)");
assert!(self.get_test_result().is_none());
assert_eq!(&self.raw_func_str, "sin(x)");
self.integral = false;
self.derivative = false;
assert!(!self.integral);
assert!(!self.derivative);
assert!(self.back_data.is_empty());
assert!(self.integral_data.is_none());
assert!(self.root_data.is_empty());
assert!(self.extrema_data.is_empty());
assert!(self.derivative_data.is_empty());
settings.min_x -= 1.0;
settings.max_x -= 1.0;
self.calculate(true, true, false, &settings);
assert!(!self.back_data.is_empty());
assert!(self.integral_data.is_none());
assert!(self.root_data.is_empty());
assert!(self.extrema_data.is_empty());
assert!(!self.derivative_data.is_empty());
}
}
}