Simon Gardling 2bd1f641f9 comments
2022-03-28 09:09:36 -04:00

479 lines
12 KiB
Rust

#![allow(clippy::too_many_arguments)] // Clippy, shut
use crate::egui_app::AppSettings;
use crate::function_output::FunctionOutput;
use crate::misc::*;
use crate::parsing::BackingFunction;
use eframe::{egui, epaint};
use egui::{
plot::{BarChart, PlotUi, Value},
widgets::plot::Bar,
};
use epaint::Color32;
use std::fmt::{self, Debug};
#[cfg(not(target_arch = "wasm32"))]
use rayon::iter::ParallelIterator;
/// Represents the possible variations of Riemann Sums
#[derive(PartialEq, Debug, Copy, Clone)]
pub enum Riemann {
Left,
Middle,
Right,
}
impl fmt::Display for Riemann {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self) }
}
lazy_static::lazy_static! {
/// Represents a "default" instance of `FunctionEntry`
pub static ref DEFAULT_FUNCTION_ENTRY: FunctionEntry = FunctionEntry::default();
}
/// `FunctionEntry` is a function that can calculate values, integrals,
/// derivatives, etc etc
#[derive(Clone)]
pub struct FunctionEntry {
/// The `BackingFunction` instance that is used to generate `f(x)`, `f'(x)`,
/// and `f''(x)`
function: BackingFunction,
/// Stores a function string (that hasn't been processed via
/// `process_func_str`) to display to the user
func_str: String,
/// Minimum and Maximum values of what do display
min_x: f64,
max_x: f64,
/// output/cached data
output: FunctionOutput,
/// If calculating/displayingintegrals are enabled
pub integral: bool,
/// If displaying derivatives are enabled (note, they are still calculated
/// for other purposes)
pub derivative: bool,
}
impl Default for FunctionEntry {
/// Creates default FunctionEntry instance (which is empty)
fn default() -> FunctionEntry {
FunctionEntry {
function: BackingFunction::new(""),
func_str: String::new(),
min_x: -1.0,
max_x: 1.0,
output: FunctionOutput::new_empty(),
integral: false,
derivative: false,
}
}
}
impl FunctionEntry {
/// Update function settings
pub fn update(&mut self, func_str: &str, integral: bool, derivative: bool) {
// If the function string changes, just wipe and restart from scratch
if func_str != self.func_str {
self.func_str = func_str.to_string();
self.function = BackingFunction::new(func_str);
self.output.invalidate_whole();
}
self.derivative = derivative;
self.integral = integral;
}
/// Creates and does the math for creating all the rectangles under the
/// graph
fn integral_rectangles(
&self, integral_min_x: f64, integral_max_x: f64, sum: Riemann, integral_num: usize,
) -> (Vec<(f64, f64)>, f64) {
if integral_min_x.is_nan() {
panic!("integral_min_x is NaN")
} else if integral_max_x.is_nan() {
panic!("integral_max_x is NaN")
}
let step = (integral_min_x - integral_max_x).abs() / (integral_num as f64);
let data2: Vec<(f64, f64)> = dyn_iter(&step_helper(integral_num, integral_min_x, step))
.map(|x| {
let step_offset = step * x.signum(); // store the offset here so it doesn't have to be calculated multiple times
let x2: f64 = x + step_offset;
let (left_x, right_x) = match x.is_sign_positive() {
true => (*x, x2),
false => (x2, *x),
};
let y = match sum {
Riemann::Left => self.function.get(left_x),
Riemann::Right => self.function.get(right_x),
Riemann::Middle => {
(self.function.get(left_x) + self.function.get(right_x)) / 2.0
}
};
(x + (step_offset / 2.0), y)
})
.filter(|(_, y)| !y.is_nan())
.collect();
let area = data2.iter().map(|(_, y)| y * step).sum();
(data2, area)
}
/// Returns `self.func_str`
pub fn get_func_str(&self) -> &str { &self.func_str }
/// Helps with processing newton's method depending on level of derivative
fn newtons_method_helper(&self, threshold: f64, derivative_level: usize) -> Option<Vec<Value>> {
let range = self.min_x..self.max_x;
let newtons_method_output: Vec<f64> = match derivative_level {
0 => newtons_method_helper(
threshold,
range,
self.output.back.to_owned().unwrap(),
&|x: f64| self.function.get(x),
&|x: f64| self.function.get_derivative_1(x),
),
1 => newtons_method_helper(
threshold,
range,
self.output.derivative.to_owned().unwrap(),
&|x: f64| self.function.get_derivative_1(x),
&|x: f64| self.function.get_derivative_2(x),
),
_ => unreachable!(),
};
if newtons_method_output.is_empty() {
None
} else {
Some(
dyn_iter(&newtons_method_output)
.map(|x| (*x, self.function.get(*x)))
.map(|(x, y)| Value::new(x, y))
.collect(),
)
}
}
/// Does the calculations and stores results in `self.output`
pub fn calculate(
&mut self, min_x: f64, max_x: f64, width_changed: bool, settings: AppSettings,
) {
let resolution: f64 = settings.plot_width as f64 / (max_x.abs() + min_x.abs());
let resolution_iter = resolution_helper(settings.plot_width + 1, min_x, resolution);
// Makes sure proper arguments are passed when integral is enabled
if self.integral && settings.integral_changed {
self.output.invalidate_integral();
}
let mut partial_regen = false;
let min_max_changed = (min_x != self.min_x) | (max_x != self.max_x);
if width_changed {
self.output.invalidate_back();
self.output.invalidate_derivative();
self.min_x = min_x;
self.max_x = max_x;
} else if min_max_changed && self.output.back.is_some() {
partial_regen = true;
let back_cache = self.output.back.as_ref().unwrap();
let x_data: SteppedVector = back_cache
.iter()
.map(|ele| ele.x)
.collect::<Vec<f64>>()
.into();
let back_data: Vec<Value> = dyn_iter(&resolution_iter)
.cloned()
.map(|x| {
if let Some(i) = x_data.get_index(x) {
back_cache[i]
} else {
Value::new(x, self.function.get(x))
}
})
.collect();
assert_eq!(back_data.len(), settings.plot_width + 1);
self.output.back = Some(back_data);
let derivative_cache = self.output.derivative.as_ref().unwrap();
let new_derivative_data: Vec<Value> = dyn_iter(&resolution_iter)
.map(|x| {
if let Some(i) = x_data.get_index(*x) {
derivative_cache[i]
} else {
Value::new(*x, self.function.get_derivative_1(*x))
}
})
.collect();
assert_eq!(new_derivative_data.len(), settings.plot_width + 1);
self.output.derivative = Some(new_derivative_data);
} else {
self.output.invalidate_back();
self.output.invalidate_derivative();
}
self.min_x = min_x;
self.max_x = max_x;
let threshold: f64 = resolution / 2.0;
if !partial_regen {
self.output.back = Some({
if self.output.back.is_none() {
let data: Vec<Value> = dyn_iter(&resolution_iter)
.map(|x| Value::new(*x, self.function.get(*x)))
.collect();
assert_eq!(data.len(), settings.plot_width + 1);
self.output.back = Some(data);
}
self.output.back.as_ref().unwrap().clone()
});
self.output.derivative = {
if self.output.derivative.is_none() {
let data: Vec<Value> = dyn_iter(&resolution_iter)
.map(|x| Value::new(*x, self.function.get_derivative_1(*x)))
.collect();
assert_eq!(data.len(), settings.plot_width + 1);
self.output.derivative = Some(data);
}
Some(self.output.derivative.as_ref().unwrap().clone())
};
}
self.output.integral = match self.integral {
true => {
if self.output.integral.is_none() {
let (data, area) = self.integral_rectangles(
settings.integral_min_x,
settings.integral_max_x,
settings.riemann_sum,
settings.integral_num,
);
self.output.integral =
Some((data.iter().map(|(x, y)| Bar::new(*x, *y)).collect(), area));
}
let cache = self.output.integral.as_ref().unwrap();
Some((cache.0.clone(), cache.1))
}
false => None,
};
// Calculates extrema
if settings.do_extrema && (min_max_changed | self.output.extrema.is_none()) {
self.output.extrema = self.newtons_method_helper(threshold, 1);
}
// Calculates roots
if settings.do_roots && (min_max_changed | self.output.roots.is_none()) {
self.output.roots = self.newtons_method_helper(threshold, 0);
}
}
/// Displays the function's output on PlotUI `plot_ui` with settings
/// `settings`. Returns an `Option<f64>` of the calculated integral
pub fn display(&self, plot_ui: &mut PlotUi, settings: AppSettings) -> Option<f64> {
let func_str = self.get_func_str();
let derivative_str = self.function.get_derivative_str();
let step = (settings.integral_min_x - settings.integral_max_x).abs()
/ (settings.integral_num as f64);
// Plot back data
plot_ui.line(
vec_tuple_to_line(self.output.back.clone().unwrap())
.color(Color32::RED)
.name(func_str),
);
// Plot derivative data
if self.derivative {
if let Some(derivative_data) = self.output.derivative.clone() {
plot_ui.line(
vec_tuple_to_line(derivative_data)
.color(Color32::GREEN)
.name(derivative_str),
);
}
}
// Plot extrema points
if settings.do_extrema {
if let Some(extrema_data) = self.output.extrema.clone() {
plot_ui.points(
vec_tuple_to_points(extrema_data)
.color(Color32::YELLOW)
.name("Extrema")
.radius(5.0), // Radius of points of Extrema
);
}
}
// Plot roots points
if settings.do_roots {
if let Some(roots_data) = self.output.roots.clone() {
plot_ui.points(
vec_tuple_to_points(roots_data)
.color(Color32::LIGHT_BLUE)
.name("Root")
.radius(5.0), // Radius of points of Roots
);
}
}
// Plot integral data
if let Some(integral_data) = self.output.integral.clone() {
plot_ui.bar_chart(
BarChart::new(integral_data.0)
.color(Color32::BLUE)
.width(step),
);
// return value rounded to 8 decimal places
Some(crate::misc::decimal_round(integral_data.1, 8))
} else {
None
}
}
/// Runs asserts to make sure everything is the expected value
#[cfg(test)]
pub fn tests(
&mut self, settings: AppSettings, back_target: Vec<(f64, f64)>,
derivative_target: Vec<(f64, f64)>, area_target: f64, min_x: f64, max_x: f64,
) {
{
self.calculate(min_x, max_x, true, settings);
let settings = settings;
let back_target = back_target;
assert!(self.output.back.is_some());
let back_data = self.output.back.as_ref().unwrap().clone();
assert_eq!(back_data.len(), settings.plot_width + 1);
let back_vec_tuple = back_data.to_tuple();
assert_eq!(back_vec_tuple, back_target);
assert!(self.integral);
assert!(self.derivative);
assert_eq!(self.output.roots.is_some(), settings.do_roots);
assert_eq!(self.output.extrema.is_some(), settings.do_extrema);
assert!(self.output.derivative.is_some());
assert!(self.output.integral.is_some());
assert_eq!(
self.output.derivative.as_ref().unwrap().to_tuple(),
derivative_target
);
assert_eq!(self.output.integral.clone().unwrap().1, area_target);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn app_settings_constructor(
sum: Riemann, integral_min_x: f64, integral_max_x: f64, pixel_width: usize,
integral_num: usize,
) -> AppSettings {
crate::egui_app::AppSettings {
help_open: false,
info_open: false,
show_side_panel: false,
riemann_sum: sum,
integral_min_x,
integral_max_x,
integral_changed: true,
integral_num,
dark_mode: false,
do_extrema: false,
do_roots: false,
plot_width: pixel_width,
}
}
static BACK_TARGET: [(f64, f64); 11] = [
(-1.0, 1.0),
(-0.8, 0.6400000000000001),
(-0.6, 0.36),
(-0.4, 0.16000000000000003),
(-0.19999999999999996, 0.03999999999999998),
(0.0, 0.0),
(0.19999999999999996, 0.03999999999999998),
(0.3999999999999999, 0.15999999999999992),
(0.6000000000000001, 0.3600000000000001),
(0.8, 0.6400000000000001),
(1.0, 1.0),
];
static DERIVATIVE_TARGET: [(f64, f64); 11] = [
(-1.0, -2.0),
(-0.8, -1.6),
(-0.6, -1.2),
(-0.4, -0.8),
(-0.19999999999999996, -0.3999999999999999),
(0.0, 0.0),
(0.19999999999999996, 0.3999999999999999),
(0.3999999999999999, 0.7999999999999998),
(0.6000000000000001, 1.2000000000000002),
(0.8, 1.6),
(1.0, 2.0),
];
fn do_test(sum: Riemann, area_target: f64) {
let settings = app_settings_constructor(sum, -1.0, 1.0, 10, 10);
let mut function = FunctionEntry::default();
function.update("x^2", true, true);
function.tests(
settings,
BACK_TARGET.to_vec(),
DERIVATIVE_TARGET.to_vec(),
area_target,
-1.0,
1.0,
);
}
#[test]
fn left_function_test() {
let area_target = 0.9600000000000001;
do_test(Riemann::Left, area_target);
}
#[test]
fn middle_function_test() {
let area_target = 0.92;
do_test(Riemann::Middle, area_target);
}
#[test]
fn right_function_test() {
let area_target = 0.8800000000000001;
do_test(Riemann::Right, area_target);
}
}