242 lines
6.3 KiB
Rust
242 lines
6.3 KiB
Rust
use std::ops::Range;
|
|
|
|
/// `SteppedVector` is used in order to efficiently sort through an ordered
|
|
/// `Vec<f64>` Used in order to speedup the processing of cached data when
|
|
/// moving horizontally without zoom in `FunctionEntry`. Before this struct, the
|
|
/// index was calculated with `.iter().position(....` which was horribly
|
|
/// inefficient
|
|
pub struct SteppedVector {
|
|
// Actual data being referenced. HAS to be sorted from minimum to maximum
|
|
data: Vec<f64>,
|
|
|
|
// Minimum value
|
|
min: f64,
|
|
|
|
// Maximum value
|
|
max: f64,
|
|
|
|
// Since all entries in `data` are evenly spaced, this field stores the step between 2 adjacent
|
|
// elements
|
|
step: f64,
|
|
}
|
|
|
|
impl SteppedVector {
|
|
/// Returns `Option<usize>` with index of element with value `x`. and `None`
|
|
/// if `x` does not exist in `data`
|
|
pub fn get_index(&self, x: f64) -> Option<usize> {
|
|
// if `x` is outside range, just go ahead and return `None` as it *shouldn't* be
|
|
// in `data`
|
|
if (x > self.max) | (self.min > x) {
|
|
return None;
|
|
}
|
|
|
|
if x == self.min {
|
|
return Some(0);
|
|
}
|
|
|
|
if x == self.max {
|
|
return Some(self.data.len() - 1);
|
|
}
|
|
|
|
// Do some math in order to calculate the expected index value
|
|
let possible_i = ((x - self.min) / self.step) as usize;
|
|
|
|
// Make sure that the index is valid by checking the data returned vs the actual
|
|
// data (just in case)
|
|
if self.data[possible_i] == x {
|
|
// It is valid!
|
|
return Some(possible_i);
|
|
} else {
|
|
// (For some reason) it wasn't!
|
|
return None;
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub fn get_min(&self) -> f64 { self.min }
|
|
|
|
#[allow(dead_code)]
|
|
pub fn get_max(&self) -> f64 { self.max }
|
|
|
|
#[allow(dead_code)]
|
|
pub fn get_data(&self) -> Vec<f64> { self.data.clone() }
|
|
}
|
|
|
|
// Convert `Vec<f64>` into `SteppedVector`
|
|
impl From<Vec<f64>> for SteppedVector {
|
|
fn from(input_data: Vec<f64>) -> SteppedVector {
|
|
let mut data = input_data;
|
|
// length of data
|
|
let data_length = data.len();
|
|
|
|
// Ensure data is of correct length
|
|
if data_length < 2 {
|
|
panic!("SteppedVector: data should have a length longer than 2");
|
|
}
|
|
|
|
// length of data subtracted by 1 (represents the maximum index value)
|
|
let data_i_length = data_length - 1;
|
|
|
|
let mut max: f64 = data[data_i_length]; // The max value should be the first element
|
|
let mut min: f64 = data[0]; // The minimum value should be the last element
|
|
|
|
if min > max {
|
|
tracing::debug!("SteppedVector: min is larger than max, sorting.");
|
|
data.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
|
|
max = data[data_i_length];
|
|
min = data[0];
|
|
}
|
|
|
|
// Calculate the step between elements
|
|
let step = (max - min).abs() / (data_length as f64);
|
|
|
|
// Create and return the struct
|
|
SteppedVector {
|
|
data,
|
|
min,
|
|
max,
|
|
step,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn stepped_vector_test() {
|
|
let min: i32 = -10;
|
|
let max: i32 = 10;
|
|
let data: Vec<f64> = (min..=max).map(|x| x as f64).collect();
|
|
let len_data = data.len();
|
|
let stepped_vector: SteppedVector = data.into();
|
|
|
|
assert_eq!(stepped_vector.get_min(), min as f64);
|
|
assert_eq!(stepped_vector.get_max(), max as f64);
|
|
|
|
assert_eq!(stepped_vector.get_index(min as f64), Some(0));
|
|
assert_eq!(stepped_vector.get_index(max as f64), Some(len_data - 1));
|
|
|
|
for i in min..=max {
|
|
assert_eq!(
|
|
stepped_vector.get_index(i as f64),
|
|
Some((i + min.abs()) as usize)
|
|
);
|
|
}
|
|
|
|
assert_eq!(stepped_vector.get_index((min - 1) as f64), None);
|
|
assert_eq!(stepped_vector.get_index((max + 1) as f64), None);
|
|
}
|
|
|
|
/// Rounds f64 to `n` decimal places
|
|
pub fn decimal_round(x: f64, n: usize) -> f64 {
|
|
let large_number: f64 = 10.0_f64.powf(n as f64); // 10^n
|
|
(x * large_number).round() / large_number // round and devide in order to cut
|
|
// off after the `n`th decimal place
|
|
}
|
|
|
|
/// Implements newton's method of finding roots.
|
|
/// `threshold` is the target accuracy threshold
|
|
/// `range` is the range of valid x values (used to stop calculation when the
|
|
/// point won't display anyways) `data` is the data to iterate over (a Vector of
|
|
/// egui's `Value` struct) `f` is f(x)
|
|
/// `f_1` is f'(x)
|
|
/// The function returns a Vector of `x` values where roots occur
|
|
pub fn newtons_method(
|
|
threshold: f64, range: Range<f64>, data: Vec<eframe::egui::plot::Value>,
|
|
f: &dyn Fn(f64) -> f64, f_1: &dyn Fn(f64) -> f64,
|
|
) -> Vec<f64> {
|
|
let mut output_list: Vec<f64> = Vec::new();
|
|
let mut last_ele_option: Option<eframe::egui::plot::Value> = None;
|
|
for ele in data.iter() {
|
|
if last_ele_option.is_none() {
|
|
last_ele_option = Some(*ele);
|
|
continue;
|
|
}
|
|
|
|
let last_ele_y = last_ele_option.unwrap().y; // store this here as it's used multiple times
|
|
|
|
// If either are NaN, just continue iterating
|
|
if last_ele_y.is_nan() | ele.y.is_nan() {
|
|
continue;
|
|
}
|
|
|
|
if last_ele_y.signum() != ele.y.signum() {
|
|
let x = {
|
|
let mut x1: f64 = last_ele_option.unwrap().x;
|
|
let mut x2: f64;
|
|
let mut fail: bool = false;
|
|
loop {
|
|
x2 = x1 - (f(x1) / f_1(x1));
|
|
if !range.contains(&x2) {
|
|
fail = true;
|
|
break;
|
|
}
|
|
|
|
// If below threshold, break
|
|
if (x2 - x1).abs() < threshold {
|
|
break;
|
|
}
|
|
|
|
x1 = x2;
|
|
}
|
|
|
|
// If failed, return NaN, which is then filtered out
|
|
match fail {
|
|
true => f64::NAN,
|
|
false => x1,
|
|
}
|
|
};
|
|
|
|
if !x.is_nan() {
|
|
output_list.push(x);
|
|
}
|
|
}
|
|
last_ele_option = Some(*ele);
|
|
}
|
|
output_list
|
|
}
|
|
|
|
#[derive(PartialEq, Debug)]
|
|
pub struct JsonFileOutput {
|
|
pub help_expr: String,
|
|
pub help_vars: String,
|
|
pub help_panel: String,
|
|
pub help_function: String,
|
|
pub help_other: String,
|
|
pub license_info: String,
|
|
}
|
|
|
|
pub struct SerdeValueHelper {
|
|
value: serde_json::Value,
|
|
}
|
|
|
|
impl SerdeValueHelper {
|
|
pub fn new(string: &str) -> Self {
|
|
Self {
|
|
value: serde_json::from_str(string).unwrap(),
|
|
}
|
|
}
|
|
|
|
fn parse_multiline(&self, key: &str) -> String {
|
|
(&self.value[key])
|
|
.as_array()
|
|
.unwrap()
|
|
.iter()
|
|
.map(|ele| ele.as_str().unwrap())
|
|
.fold(String::new(), |s, l| s + l + "\n")
|
|
.trim_end()
|
|
.to_owned()
|
|
}
|
|
|
|
fn parse_singleline(&self, key: &str) -> String { self.value[key].as_str().unwrap().to_owned() }
|
|
|
|
pub fn parse_values(&self) -> JsonFileOutput {
|
|
JsonFileOutput {
|
|
help_expr: self.parse_multiline("help_expr"),
|
|
help_vars: self.parse_multiline("help_vars"),
|
|
help_panel: self.parse_multiline("help_panel"),
|
|
help_function: self.parse_multiline("help_function"),
|
|
help_other: self.parse_multiline("help_other"),
|
|
license_info: self.parse_singleline("license_info"),
|
|
}
|
|
}
|
|
}
|