531 lines
16 KiB
Rust

use ytbn_graphing_software::{AppSettings, EguiHelper, FunctionEntry, Riemann};
fn app_settings_constructor(
sum: Riemann,
integral_min_x: f64,
integral_max_x: f64,
pixel_width: usize,
integral_num: usize,
min_x: f64,
max_x: f64,
) -> AppSettings {
AppSettings {
riemann_sum: sum,
integral_min_x,
integral_max_x,
min_x,
max_x,
integral_changed: true,
integral_num,
do_extrema: false,
do_roots: false,
plot_width: pixel_width,
}
}
static BACK_TARGET: [(f64, f64); 11] = [
(-1.0, 1.0),
(-0.8, 0.6400000000000001),
(-0.6, 0.36),
(-0.4, 0.16000000000000003),
(-0.19999999999999996, 0.03999999999999998),
(0.0, 0.0),
(0.19999999999999996, 0.03999999999999998),
(0.3999999999999999, 0.15999999999999992),
(0.6000000000000001, 0.3600000000000001),
(0.8, 0.6400000000000001),
(1.0, 1.0),
];
static DERIVATIVE_TARGET: [(f64, f64); 11] = [
(-1.0, -2.0),
(-0.8, -1.6),
(-0.6, -1.2),
(-0.4, -0.8),
(-0.19999999999999996, -0.3999999999999999),
(0.0, 0.0),
(0.19999999999999996, 0.3999999999999999),
(0.3999999999999999, 0.7999999999999998),
(0.6000000000000001, 1.2000000000000002),
(0.8, 1.6),
(1.0, 2.0),
];
#[cfg(test)]
fn do_test(sum: Riemann, area_target: f64) {
let settings = app_settings_constructor(sum, -1.0, 1.0, 10, 10, -1.0, 1.0);
let mut function = FunctionEntry::default();
function.update_string("x^2");
function.integral = true;
function.derivative = true;
let mut settings = settings;
{
function.calculate(true, true, false, settings);
assert!(!function.back_data.is_empty());
assert_eq!(function.back_data.len(), settings.plot_width + 1);
assert!(function.integral);
assert!(function.derivative);
assert_eq!(!function.root_data.is_empty(), settings.do_roots);
assert_eq!(!function.extrema_data.is_empty(), settings.do_extrema);
assert!(!function.derivative_data.is_empty());
assert!(function.integral_data.is_some());
assert_eq!(function.integral_data.clone().unwrap().1, area_target);
let a = function.derivative_data.clone().to_tuple();
assert_eq!(a.len(), DERIVATIVE_TARGET.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, DERIVATIVE_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, DERIVATIVE_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", DERIVATIVE_TARGET, a);
}
}
let a_1 = function.back_data.clone().to_tuple();
assert_eq!(a_1.len(), BACK_TARGET.len());
assert_eq!(a.len(), BACK_TARGET.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, BACK_TARGET[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, BACK_TARGET[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", BACK_TARGET, a_1);
}
}
}
{
settings.min_x += 1.0;
settings.max_x += 1.0;
function.calculate(true, true, false, settings);
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", b, a);
}
}
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", b_1, a_1);
}
}
}
{
settings.min_x -= 2.0;
settings.max_x -= 2.0;
function.calculate(true, true, false, settings);
let a = function
.derivative_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b = DERIVATIVE_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a.len(), b.len());
for i in 0..a.len() {
if !emath::almost_equal(a[i].0 as f32, b[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a[i].1 as f32, b[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", b, a);
}
}
let a_1 = function
.back_data
.clone()
.to_tuple()
.iter()
.rev()
.take(6)
.rev()
.cloned()
.collect::<Vec<(f64, f64)>>();
let b_1 = BACK_TARGET
.iter()
.take(6)
.cloned()
.collect::<Vec<(f64, f64)>>();
assert_eq!(a_1.len(), b_1.len());
assert_eq!(a.len(), b_1.len());
for i in 0..a.len() {
if !emath::almost_equal(a_1[i].0 as f32, b_1[i].0 as f32, f32::EPSILON)
| !emath::almost_equal(a_1[i].1 as f32, b_1[i].1 as f32, f32::EPSILON)
{
panic!("Expected: {:?}\nGot: {:?}", b_1, a_1);
}
}
}
{
function.update_string("sin(x)");
assert!(function.get_test_result().is_none());
assert_eq!(&function.raw_func_str, "sin(x)");
function.integral = false;
function.derivative = false;
assert!(!function.integral);
assert!(!function.derivative);
assert!(function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(function.derivative_data.is_empty());
settings.min_x -= 1.0;
settings.max_x -= 1.0;
function.calculate(true, true, false, settings);
assert!(!function.back_data.is_empty());
assert!(function.integral_data.is_none());
assert!(function.root_data.is_empty());
assert!(function.extrema_data.is_empty());
assert!(!function.derivative_data.is_empty());
}
}
#[test]
fn left_function() {
do_test(Riemann::Left, 0.9600000000000001);
}
#[test]
fn middle_function() {
do_test(Riemann::Middle, 0.92);
}
#[test]
fn right_function() {
do_test(Riemann::Right, 0.8800000000000001);
}
#[test]
fn test_extrema() {
let mut settings = app_settings_constructor(Riemann::Middle, -2.0, 2.0, 100, 100, -2.0, 2.0);
settings.do_extrema = true;
let mut function = FunctionEntry::default();
function.update_string("x^2 - 4"); // Parabola with vertex at (0, -4)
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// For f(x) = x^2 - 4, f'(x) = 2x
// Extrema occurs where f'(x) = 0, so at x = 0
assert!(!function.extrema_data.is_empty());
// Should have exactly one extremum at x = 0
assert_eq!(function.extrema_data.len(), 1);
let extremum = function.extrema_data[0];
assert!(emath::almost_equal(extremum.x as f32, 0.0, f32::EPSILON));
assert!(emath::almost_equal(extremum.y as f32, -4.0, f32::EPSILON));
}
#[test]
fn test_extrema_multiple() {
let mut settings = app_settings_constructor(Riemann::Middle, -3.0, 3.0, 200, 200, -3.0, 3.0);
settings.do_extrema = true;
let mut function = FunctionEntry::default();
function.update_string("x^3 - 3*x"); // Cubic with local max and min
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// For f(x) = x^3 - 3x, f'(x) = 3x^2 - 3
// Extrema occur where f'(x) = 0, so at x = ±1
assert!(!function.extrema_data.is_empty());
// Should have exactly two extrema
assert_eq!(function.extrema_data.len(), 2);
// Sort by x coordinate for consistent testing
let mut extrema = function.extrema_data.clone();
extrema.sort_by(|a, b| a.x.partial_cmp(&b.x).unwrap());
// First extremum at x = -1, f(-1) = -1 + 3 = 2
assert!(emath::almost_equal(extrema[0].x as f32, -1.0, 0.01));
assert!(emath::almost_equal(extrema[0].y as f32, 2.0, 0.01));
// Second extremum at x = 1, f(1) = 1 - 3 = -2
assert!(emath::almost_equal(extrema[1].x as f32, 1.0, 0.01));
assert!(emath::almost_equal(extrema[1].y as f32, -2.0, 0.01));
}
#[test]
fn test_extrema_disabled() {
let mut settings = app_settings_constructor(Riemann::Middle, -2.0, 2.0, 100, 100, -2.0, 2.0);
settings.do_extrema = false; // Disable extrema
let mut function = FunctionEntry::default();
function.update_string("x^2 - 4");
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Extrema data should be empty when disabled
assert!(function.extrema_data.is_empty());
}
#[test]
fn test_roots() {
let mut settings = app_settings_constructor(Riemann::Middle, -3.0, 3.0, 200, 200, -3.0, 3.0);
settings.do_roots = true;
let mut function = FunctionEntry::default();
function.update_string("x^2 - 4"); // Parabola crossing x-axis at ±2
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// For f(x) = x^2 - 4, roots occur where x^2 = 4, so at x = ±2
assert!(!function.root_data.is_empty());
// Should have exactly two roots
assert_eq!(function.root_data.len(), 2);
// Sort by x coordinate for consistent testing
let mut roots = function.root_data.clone();
roots.sort_by(|a, b| a.x.partial_cmp(&b.x).unwrap());
// First root at x = -2
assert!(emath::almost_equal(roots[0].x as f32, -2.0, 0.01));
assert!(emath::almost_equal(roots[0].y as f32, 0.0, 0.001));
// Second root at x = 2
assert!(emath::almost_equal(roots[1].x as f32, 2.0, 0.01));
assert!(emath::almost_equal(roots[1].y as f32, 0.0, 0.001));
}
#[test]
fn test_roots_single() {
let mut settings = app_settings_constructor(Riemann::Middle, -2.0, 2.0, 100, 100, -2.0, 2.0);
settings.do_roots = true;
let mut function = FunctionEntry::default();
function.update_string("x - 1"); // Linear function crossing x-axis at x = 1
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// For f(x) = x - 1, root occurs at x = 1
assert!(!function.root_data.is_empty());
// Should have exactly one root
assert_eq!(function.root_data.len(), 1);
let root = function.root_data[0];
assert!(emath::almost_equal(root.x as f32, 1.0, 0.01));
assert!(emath::almost_equal(root.y as f32, 0.0, f32::EPSILON));
}
#[test]
fn test_roots_disabled() {
let mut settings = app_settings_constructor(Riemann::Middle, -3.0, 3.0, 200, 200, -3.0, 3.0);
settings.do_roots = false; // Disable roots
let mut function = FunctionEntry::default();
function.update_string("x^2 - 4");
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Root data should be empty when disabled
assert!(function.root_data.is_empty());
}
#[test]
fn test_extrema_and_roots_together() {
let mut settings = app_settings_constructor(Riemann::Middle, -3.0, 3.0, 200, 200, -3.0, 3.0);
settings.do_extrema = true;
settings.do_roots = true;
let mut function = FunctionEntry::default();
function.update_string("x^2 - 1"); // Parabola with vertex at (0, -1) and roots at ±1
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Should have one extremum at x = 0
assert!(!function.extrema_data.is_empty());
assert_eq!(function.extrema_data.len(), 1);
let extremum = function.extrema_data[0];
assert!(emath::almost_equal(extremum.x as f32, 0.0, 0.01));
assert!(emath::almost_equal(extremum.y as f32, -1.0, 0.01));
// Should have two roots at x = ±1
assert!(!function.root_data.is_empty());
assert_eq!(function.root_data.len(), 2);
let mut roots = function.root_data.clone();
roots.sort_by(|a, b| a.x.partial_cmp(&b.x).unwrap());
assert!(emath::almost_equal(roots[0].x as f32, -1.0, 0.01));
assert!(emath::almost_equal(roots[1].x as f32, 1.0, 0.01));
}
#[test]
fn test_extrema_no_extrema() {
let mut settings = app_settings_constructor(Riemann::Middle, -2.0, 2.0, 100, 100, -2.0, 2.0);
settings.do_extrema = true;
let mut function = FunctionEntry::default();
function.update_string("x"); // Linear function has no extrema
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Linear function should have no extrema
assert!(function.extrema_data.is_empty());
}
#[test]
fn test_roots_no_roots() {
let mut settings = app_settings_constructor(Riemann::Middle, -2.0, 2.0, 100, 100, -2.0, 2.0);
settings.do_roots = true;
let mut function = FunctionEntry::default();
function.update_string("x^2 + 1"); // Parabola that never crosses x-axis
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Function that never crosses x-axis should have no roots
assert!(function.root_data.is_empty());
}
#[test]
fn test_extrema_and_roots_with_trig() {
let mut settings = app_settings_constructor(Riemann::Middle, -4.0, 4.0, 300, 300, -4.0, 4.0);
settings.do_extrema = true;
settings.do_roots = true;
let mut function = FunctionEntry::default();
function.update_string("sin(x)"); // Sine function has extrema at odd multiples of π/2
function.integral = false;
function.derivative = false;
function.calculate(true, true, false, settings);
// Sine function should have extrema in the given range
assert!(!function.extrema_data.is_empty());
// Should have multiple extrema (local max/min)
assert!(function.extrema_data.len() >= 2);
// Check that extrema are at approximately the right locations
// Local max at π/2 ≈ 1.57, local min at 3π/2 ≈ 4.71 (outside range)
// Local min at -π/2 ≈ -1.57, local max at -3π/2 ≈ -4.71 (outside range)
let extrema_x: Vec<f32> = function.extrema_data.iter().map(|p| p.x as f32).collect();
// Should have extrema near ±π/2
assert!(
extrema_x
.iter()
.any(|&x| emath::almost_equal(x, std::f32::consts::PI / 2.0, 0.1))
);
assert!(
extrema_x
.iter()
.any(|&x| emath::almost_equal(x, -std::f32::consts::PI / 2.0, 0.1))
);
let roots_x: Vec<f32> = function.root_data.iter().map(|p| p.x as f32).collect();
assert!(
roots_x
.iter()
.any(|&x| emath::almost_equal(x, std::f32::consts::PI, 0.1))
);
assert!(
roots_x
.iter()
.any(|&x| emath::almost_equal(x, -std::f32::consts::PI, 0.1))
);
assert!(roots_x.iter().any(|&x| emath::almost_equal(x, 0.0, 0.1)));
}