initial implementation of MoveValueStats

This commit is contained in:
Simon Gardling 2025-04-23 10:46:19 -04:00
parent c9fda80c81
commit 23e7ae2822
Signed by: titaniumtown
GPG Key ID: 9AB28AC10ECE533D
4 changed files with 166 additions and 30 deletions

View File

@ -1,5 +1,5 @@
use crate::{
agent::{Agent, RandomAgent},
agent::Agent,
complexagent::ComplexAgent,
game_inner::GameInner,
logic::{ChildrenEvalMethod, FutureMoveConfig},
@ -29,7 +29,7 @@ pub fn run() {
children_eval_method: Default::default(),
};
let configs = [6]
let configs = [4, 5, 6]
.into_iter()
.map(move |d| FutureMoveConfig {
max_depth: d,
@ -71,9 +71,11 @@ pub fn run() {
.to_vec()
})
.flat_map(move |prev_c| {
[ChildrenEvalMethod::MinMax].map(move |method| FutureMoveConfig {
children_eval_method: method,
..prev_c
[ChildrenEvalMethod::MinMax, ChildrenEvalMethod::MinMaxProb].map(move |method| {
FutureMoveConfig {
children_eval_method: method,
..prev_c
}
})
})
.flat_map(move |prev_c| {
@ -108,7 +110,7 @@ pub fn run() {
.collect()
});
let mut vec: Vec<(String, AgentMaker)> = configs
let vec: Vec<(String, AgentMaker)> = configs
.into_iter()
.map(move |config| -> (String, AgentMaker) {
(
@ -117,14 +119,14 @@ pub fn run() {
)
})
.collect();
vec.push((
"RandomAgent".to_string(),
Box::new(move |piece| Box::new(RandomAgent::new(piece))),
));
// vec.push((
// "RandomAgent".to_string(),
// Box::new(move |piece| Box::new(RandomAgent::new(piece))),
// ));
let mut arena = PlayerArena::new(vec);
arena.prop_arena(100);
arena.prop_arena(1000);
println!("{}", arena);
}
@ -287,7 +289,7 @@ impl PlayerArena {
player_1,
player_2,
false,
Board::random(rand::random_range(3..=7)),
Board::random(rand::random_range(1..=15)),
)
.expect("unable to create game")
.loop_until_result();

View File

@ -92,6 +92,8 @@ impl std::fmt::Display for FutureMoveConfig {
pub enum ChildrenEvalMethod {
/// Best so far?
MinMax,
MinMaxProb,
}
impl Default for ChildrenEvalMethod {
@ -212,7 +214,18 @@ impl FutureMoves {
}
fn create_move(&self, coord: MoveCoord, board: Board, color: Piece) -> Move {
Move::new(coord, board, color, self.agent_color, MoveValueConfig {})
Move::new(
coord,
board,
color,
self.agent_color,
MoveValueConfig {
self_value_raw: matches!(
self.config.children_eval_method,
ChildrenEvalMethod::MinMaxProb
),
},
)
}
fn generate_children_raw(&self, parent_idx: usize) -> Vec<Move> {
@ -296,25 +309,53 @@ impl FutureMoves {
.map(|&child| self.arena[child].value)
.collect::<Vec<_>>();
let children_value = match self.config.children_eval_method {
match self.config.children_eval_method {
ChildrenEvalMethod::MinMax => {
if self.arena[idx].color == self.agent_color {
let child_value = if self.arena[idx].color == self.agent_color {
// get best (for the adversary) enemy play
// this assumes the adversary is playing optimally
children_values.into_iter().min()
children_values
.into_iter()
.min_by_key(|x| x.value)
.map(|x| x.value)
} else {
children_values.into_iter().max()
children_values
.into_iter()
.max_by_key(|x| x.value)
.map(|x| x.value)
}
.unwrap_or(0);
// we use `depth` and divided `self_value` by it, idk if this is worth it
// we should really setup some sort of ELO rating for each commit, playing them against
// each other or something, could be cool to benchmark these more subjective things, not
// just performance (cycles/time wise)
self.arena[idx].value.value =
self.arena[idx].self_value as i32 + child_value;
}
ChildrenEvalMethod::MinMaxProb => {
let child_value = if self.arena[idx].color == self.agent_color {
// get best (for the adversary) enemy play
// this assumes the adversary is playing optimally
children_values.iter().min()
} else {
children_values.iter().max()
}
.cloned()
.unwrap_or(Default::default());
// we use `depth` and divided `self_value` by it, idk if this is worth it
// we should really setup some sort of ELO rating for each commit, playing them against
// each other or something, could be cool to benchmark these more subjective things, not
// just performance (cycles/time wise)
self.arena[idx]
.value
.populate_self_from_children(&children_values);
self.arena[idx].value.value =
self.arena[idx].self_value as i32 + child_value.value;
}
}
.unwrap_or(0);
// we use `depth` and divided `self_value` by it, idk if this is worth it
// we should really setup some sort of ELO rating for each commit, playing them against
// each other or something, could be cool to benchmark these more subjective things, not
// just performance (cycles/time wise)
self.arena[idx].value = self.arena[idx].self_value as i32 + children_value;
}
}
}

View File

@ -1,9 +1,78 @@
use std::cmp::Ordering;
use super::board_value::BoardValueMap;
use crate::repr::{Board, CoordPair, Piece, Winner};
use allocative::Allocative;
pub type MoveCoord = Option<CoordPair>;
#[derive(Clone, Copy, PartialEq, Eq, Allocative, Debug, PartialOrd, Ord)]
pub enum MVSGameState {
Win = 1,
Loss = 0,
Tie = -1,
}
#[derive(Clone, Copy, Debug, Allocative, PartialEq, Eq, Default)]
pub struct MoveValueStats {
state: Option<MVSGameState>,
wins: u16,
losses: u16,
pub value: i32,
}
impl MoveValueStats {
fn chance_win(&self) -> Option<f32> {
let sum = self.losses + self.wins;
if sum == 0 {
return None;
}
Some(self.wins as f32 / sum as f32)
}
pub fn populate_self_from_children(&mut self, others: &[Self]) {
let wins = others.iter().map(|x| x.wins).sum::<u16>()
+ others
.iter()
.filter(|x| x.state == Some(MVSGameState::Win))
.count() as u16;
let losses = others.iter().map(|x| x.losses).sum::<u16>()
+ others
.iter()
.filter(|x| x.state == Some(MVSGameState::Loss))
.count() as u16;
self.wins = wins;
self.losses = losses;
}
}
impl PartialOrd for MoveValueStats {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for MoveValueStats {
fn cmp(&self, other: &Self) -> Ordering {
if self.state.is_some() && other.state.is_some() {
return self.state.cmp(&other.state);
}
let s_cw = self.chance_win();
let o_cw = other.chance_win();
if s_cw.is_some() && o_cw.is_some() {
if s_cw > o_cw {
return Ordering::Greater;
} else if o_cw > s_cw {
return Ordering::Less;
}
}
self.value.cmp(&other.value)
}
}
#[derive(Clone, Debug, Allocative)]
pub struct Move {
/// Coordinates (i, j) of the move (if it exists)
@ -23,7 +92,7 @@ pub struct Move {
pub children: Vec<usize>,
/// Value of this move (including children)
pub value: i32,
pub value: MoveValueStats,
/// What is the inherit value of this move (not including children)
pub self_value: i16,
@ -35,7 +104,9 @@ pub struct Move {
pub is_trimmed: bool,
}
pub struct MoveValueConfig {}
pub struct MoveValueConfig {
pub self_value_raw: bool,
}
impl Move {
pub fn new(
@ -50,12 +121,34 @@ impl Move {
winner: board.game_winner(),
parent: None,
children: Vec::new(),
value: i32::MIN,
value: Default::default(),
color,
is_trimmed: false,
self_value: 0,
};
m.self_value = m.compute_self_value(agent_color, &board, mvc);
// set wins/losses values appropriately
match m.winner {
Winner::Player(piece) => {
if piece == agent_color {
m.value.wins += 1;
m.value.state = Some(MVSGameState::Win);
} else {
m.value.losses += 1;
m.value.state = Some(MVSGameState::Loss);
}
}
Winner::Tie => {
m.value.state = Some(MVSGameState::Tie);
}
Winner::None => {}
}
if !mvc.self_value_raw {
m.self_value = m.compute_self_value(agent_color, &board, mvc);
} else {
m.self_value = const { BoardValueMap::weighted() }.board_value(&board, agent_color);
}
m
}
@ -71,7 +164,6 @@ impl Move {
}
// I guess ignore Ties here, don't give them an explicit value,
const { BoardValueMap::weighted() }.board_value(board, agent_color)
}

View File

@ -3,10 +3,11 @@ use allocative::Allocative;
use rand::seq::IteratorRandom;
use std::{cmp::Ordering, fmt};
#[derive(PartialEq, Eq, Copy, Clone, Debug, Allocative)]
#[derive(PartialEq, Eq, Copy, Clone, Debug, Allocative, Default)]
pub enum Winner {
Player(Piece),
Tie,
#[default]
None,
}