MinMax is much better
This commit is contained in:
parent
a50ca2c1b1
commit
cb63b49f7a
@ -1,6 +1,6 @@
|
||||
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
||||
use othello::{
|
||||
logic::{ChildrenEvalMethod, FutureMoveConfig, FutureMoves},
|
||||
logic::{FutureMoveConfig, FutureMoves},
|
||||
repr::{Board, Piece},
|
||||
};
|
||||
|
||||
@ -13,7 +13,7 @@ fn extend_layers_no_pruning(depth: usize) -> usize {
|
||||
max_arena_size: usize::MAX,
|
||||
do_prune: false,
|
||||
print: false,
|
||||
children_eval_method: ChildrenEvalMethod::AverageDivDepth,
|
||||
children_eval_method: Default::default(),
|
||||
};
|
||||
let mut fut = FutureMoves::new(Piece::Black, config);
|
||||
fut.update_from_board(&Board::STARTING_POSITION);
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::{
|
||||
logic::{ChildrenEvalMethod, FutureMoveConfig, FutureMoves},
|
||||
logic::{FutureMoveConfig, FutureMoves},
|
||||
repr::{Board, Piece, Winner},
|
||||
};
|
||||
use allocative::FlameGraphBuilder;
|
||||
@ -18,7 +18,7 @@ pub fn run() {
|
||||
max_arena_size: 100_000_000,
|
||||
do_prune: true,
|
||||
print: true,
|
||||
children_eval_method: ChildrenEvalMethod::AverageDivDepth,
|
||||
children_eval_method: Default::default(),
|
||||
},
|
||||
);
|
||||
|
||||
|
59
src/elo.rs
59
src/elo.rs
@ -1,5 +1,5 @@
|
||||
use crate::{
|
||||
agent::Agent,
|
||||
agent::{Agent, RandomAgent},
|
||||
complexagent::ComplexAgent,
|
||||
game_inner::GameInner,
|
||||
logic::{ChildrenEvalMethod, FutureMoveConfig},
|
||||
@ -18,7 +18,7 @@ type AgentMaker = Box<dyn Fn(Piece) -> Box<dyn Agent>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn run() {
|
||||
const FMV_BASE: FutureMoveConfig = FutureMoveConfig {
|
||||
let fmv_base = FutureMoveConfig {
|
||||
max_depth: 20,
|
||||
min_arena_depth: 14,
|
||||
top_k_children: 2,
|
||||
@ -26,26 +26,26 @@ pub fn run() {
|
||||
max_arena_size: usize::MAX,
|
||||
do_prune: false,
|
||||
print: false,
|
||||
children_eval_method: ChildrenEvalMethod::AverageDivDepth,
|
||||
children_eval_method: Default::default(),
|
||||
};
|
||||
|
||||
let configs = [6]
|
||||
.into_iter()
|
||||
.map(move |d| FutureMoveConfig {
|
||||
max_depth: d,
|
||||
..FMV_BASE
|
||||
..fmv_base
|
||||
})
|
||||
.flat_map(move |prev_c| {
|
||||
// create children which enable, and disable pruning
|
||||
[true, false].map(move |do_prune| FutureMoveConfig { do_prune, ..prev_c })
|
||||
})
|
||||
.filter(move |move_c| {
|
||||
if move_c.do_prune {
|
||||
move_c.max_depth >= 8
|
||||
} else {
|
||||
move_c.max_depth < 8
|
||||
}
|
||||
[false].map(move |do_prune| FutureMoveConfig { do_prune, ..prev_c })
|
||||
})
|
||||
// .filter(move |move_c| {
|
||||
// if move_c.do_prune {
|
||||
// move_c.max_depth >= 8
|
||||
// } else {
|
||||
// move_c.max_depth < 8
|
||||
// }
|
||||
// })
|
||||
// .flat_map(move |prev_c| {
|
||||
// [
|
||||
// ChildrenEvalMethod::Average,
|
||||
@ -64,12 +64,23 @@ pub fn run() {
|
||||
}
|
||||
|
||||
// different values of top_k_children
|
||||
[1, 2, 3]
|
||||
.map(move |top_k_children| FutureMoveConfig {
|
||||
top_k_children,
|
||||
..prev_c
|
||||
})
|
||||
.to_vec()
|
||||
[2].map(move |top_k_children| FutureMoveConfig {
|
||||
top_k_children,
|
||||
..prev_c
|
||||
})
|
||||
.to_vec()
|
||||
})
|
||||
.flat_map(move |prev_c| {
|
||||
[
|
||||
ChildrenEvalMethod::Average,
|
||||
ChildrenEvalMethod::AverageDivDepth,
|
||||
ChildrenEvalMethod::MinAvgDivDepth,
|
||||
ChildrenEvalMethod::MinMax,
|
||||
]
|
||||
.map(move |method| FutureMoveConfig {
|
||||
children_eval_method: method,
|
||||
..prev_c
|
||||
})
|
||||
})
|
||||
.flat_map(move |prev_c| {
|
||||
if !prev_c.do_prune {
|
||||
@ -79,8 +90,7 @@ pub fn run() {
|
||||
|
||||
// different values to be subtracted from max_depth
|
||||
// to become min_arena_depth
|
||||
[1, 2, 3]
|
||||
.into_iter()
|
||||
[2].into_iter()
|
||||
.filter(|&x| x <= prev_c.max_depth)
|
||||
.map(move |ad_offset| FutureMoveConfig {
|
||||
min_arena_depth: prev_c.max_depth - ad_offset,
|
||||
@ -95,8 +105,7 @@ pub fn run() {
|
||||
}
|
||||
|
||||
// different values of up_to_minus
|
||||
[prev_c.max_depth, 1, 2, 3]
|
||||
.into_iter()
|
||||
[3].into_iter()
|
||||
.filter(|&x| x <= prev_c.max_depth)
|
||||
.map(move |up_to_minus| FutureMoveConfig {
|
||||
up_to_minus,
|
||||
@ -105,7 +114,7 @@ pub fn run() {
|
||||
.collect()
|
||||
});
|
||||
|
||||
let vec: Vec<(String, AgentMaker)> = configs
|
||||
let mut vec: Vec<(String, AgentMaker)> = configs
|
||||
.into_iter()
|
||||
.map(move |config| -> (String, AgentMaker) {
|
||||
(
|
||||
@ -114,6 +123,10 @@ pub fn run() {
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
vec.push((
|
||||
"RandomAgent".to_string(),
|
||||
Box::new(move |piece| Box::new(RandomAgent::new(piece))),
|
||||
));
|
||||
|
||||
let mut arena = PlayerArena::new(vec);
|
||||
|
||||
|
@ -79,10 +79,18 @@ impl std::fmt::Display for FutureMoveConfig {
|
||||
#[allow(dead_code)]
|
||||
pub enum ChildrenEvalMethod {
|
||||
Average,
|
||||
/// AverageDivDepth gives the agent a sense of
|
||||
/// time when it comes to how far away a potential win or gain
|
||||
/// is. This performs much better in the Elo Arena than `Average`
|
||||
AverageDivDepth,
|
||||
|
||||
MinAvgDivDepth,
|
||||
|
||||
/// Best so far?
|
||||
MinMax,
|
||||
}
|
||||
|
||||
impl Default for ChildrenEvalMethod {
|
||||
fn default() -> Self {
|
||||
Self::MinMax
|
||||
}
|
||||
}
|
||||
|
||||
impl FutureMoves {
|
||||
@ -287,6 +295,31 @@ impl FutureMoves {
|
||||
.sum::<i32>()
|
||||
.checked_div(self.arena[idx].children.len() as i32)
|
||||
.and_then(|x| x.checked_div(depth as i32)),
|
||||
ChildrenEvalMethod::MinAvgDivDepth => {
|
||||
if self.arena[idx].color == self.agent_color {
|
||||
// get best (for the adversary) enemy play
|
||||
// this assumes the adversary is playing optimally
|
||||
|
||||
children_values.into_iter().min()
|
||||
} else {
|
||||
children_values
|
||||
.into_iter()
|
||||
.sum::<i32>()
|
||||
.checked_div(self.arena[idx].children.len() as i32)
|
||||
.and_then(|x| x.checked_div(depth as i32))
|
||||
}
|
||||
}
|
||||
|
||||
ChildrenEvalMethod::MinMax => {
|
||||
if self.arena[idx].color == self.agent_color {
|
||||
// get best (for the adversary) enemy play
|
||||
// this assumes the adversary is playing optimally
|
||||
|
||||
children_values.into_iter().min()
|
||||
} else {
|
||||
children_values.into_iter().max()
|
||||
}
|
||||
}
|
||||
}
|
||||
.unwrap_or(0);
|
||||
|
||||
@ -571,22 +604,26 @@ impl FutureMoves {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::sync::LazyLock;
|
||||
|
||||
use super::*;
|
||||
|
||||
const FUTURE_MOVES_CONFIG: FutureMoveConfig = FutureMoveConfig {
|
||||
max_depth: 3, // we want great-grand children for traversing moves
|
||||
min_arena_depth: 0,
|
||||
top_k_children: 1,
|
||||
up_to_minus: 0,
|
||||
max_arena_size: 100,
|
||||
do_prune: false,
|
||||
print: false,
|
||||
children_eval_method: ChildrenEvalMethod::AverageDivDepth,
|
||||
};
|
||||
static FUTURE_MOVES_CONFIG: LazyLock<FutureMoveConfig> = LazyLock::new(|| {
|
||||
FutureMoveConfig {
|
||||
max_depth: 3, // we want great-grand children for traversing moves
|
||||
min_arena_depth: 0,
|
||||
top_k_children: 1,
|
||||
up_to_minus: 0,
|
||||
max_arena_size: 100,
|
||||
do_prune: false,
|
||||
print: false,
|
||||
children_eval_method: Default::default(),
|
||||
}
|
||||
});
|
||||
|
||||
#[test]
|
||||
fn prune_tree_test() {
|
||||
let mut futm = FutureMoves::new(Piece::Black, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::Black, *FUTURE_MOVES_CONFIG);
|
||||
|
||||
futm.update_from_board(&Board::new());
|
||||
|
||||
@ -628,7 +665,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn expand_layer_test() {
|
||||
let mut futm = FutureMoves::new(Piece::Black, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::Black, *FUTURE_MOVES_CONFIG);
|
||||
futm.config.max_depth = 1;
|
||||
|
||||
futm.update_from_board(&Board::STARTING_POSITION);
|
||||
@ -653,7 +690,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn depth_of_test() {
|
||||
let mut futm = FutureMoves::new(Piece::Black, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::Black, *FUTURE_MOVES_CONFIG);
|
||||
|
||||
futm.update_from_board(&Board::new());
|
||||
|
||||
@ -681,7 +718,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn by_depth_test() {
|
||||
let mut futm = FutureMoves::new(Piece::Black, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::Black, *FUTURE_MOVES_CONFIG);
|
||||
|
||||
futm.update_from_board(&Board::new());
|
||||
|
||||
@ -707,7 +744,7 @@ mod tests {
|
||||
/// tests whether or not FutureMoves can recover from multiple skips and then manually regenerating the arena
|
||||
#[test]
|
||||
fn skip_move_recovery() {
|
||||
let mut futm = FutureMoves::new(Piece::Black, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::Black, *FUTURE_MOVES_CONFIG);
|
||||
let mut board = Board::STARTING_POSITION;
|
||||
|
||||
// replay of a test I did
|
||||
@ -770,7 +807,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn derive_board() {
|
||||
let mut futm = FutureMoves::new(Piece::White, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::White, *FUTURE_MOVES_CONFIG);
|
||||
|
||||
let mut b = Board::STARTING_POSITION;
|
||||
futm.update_from_board(&b);
|
||||
@ -838,7 +875,7 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
let mut futm = FutureMoves::new(Piece::White, FUTURE_MOVES_CONFIG);
|
||||
let mut futm = FutureMoves::new(Piece::White, *FUTURE_MOVES_CONFIG);
|
||||
futm.update_from_board(&board);
|
||||
futm.generate();
|
||||
|
||||
|
@ -14,6 +14,8 @@ pub mod repr;
|
||||
// TODO! make this agent configuration a config option via `clap-rs`
|
||||
// or maybe even like a TUI menu?
|
||||
fn main() {
|
||||
// elo::run();
|
||||
// return;
|
||||
let player1 = complexagent::ComplexAgent::new(
|
||||
Piece::Black,
|
||||
FutureMoveConfig {
|
||||
|
Loading…
x
Reference in New Issue
Block a user