othello/src/logic/future_moves.rs

601 lines
18 KiB
Rust

use crate::{
logic::r#move::Move,
repr::{Board, Piece, Winner},
};
use indicatif::{ProgressIterator, ProgressStyle};
use std::collections::HashMap;
pub struct FutureMoves {
/// Arena containing all [`Move`]
arena: Vec<Move>,
/// Index of the [`Move`] tree's root node
current_root: Option<usize>,
/// Current generated depth of the Arena
current_depth: usize,
/// Target depth of children to generate
max_depth: usize,
/// How many deep should the lazy children status expire?
lazy_expire: usize,
/// Color w.r.t
agent_color: Piece,
}
impl FutureMoves {
pub const fn new(agent_color: Piece, max_depth: usize, lazy_expire: usize) -> Self {
Self {
arena: Vec::new(),
current_root: None,
current_depth: 0,
max_depth,
agent_color,
lazy_expire,
}
}
/// Return the length of the Arena
pub fn arena_len(&self) -> usize {
self.arena.len()
}
/// Generate children for all children of `nodes`
/// only `pub` for the sake of benchmarking
pub fn extend_layers(&mut self) {
let mut next_nodes: Vec<usize> = (0..self.arena.len())
// we want to select all nodes that don't have children, or are lazy (need to maybe be regenerated)
.filter(|&idx| {
let got = &self.arena[idx];
got.lazy_children || got.children.is_empty()
})
.filter(|&idx| self.is_connected_to_root(idx)) // put here so this will not extend needlessly before prunes
.collect();
for i in (self.current_depth + 1)..=self.max_depth {
next_nodes = next_nodes
.into_iter()
.progress_with_style(
ProgressStyle::with_template(&format!(
"Generating children (depth: {}/{}): ({{pos}}/{{len}}) {{per_sec}}",
i, self.max_depth
))
.unwrap(),
)
.flat_map(|node_idx| {
self.generate_children(
node_idx,
if self.arena[node_idx].lazy_children {
self.depth_of(node_idx)
} else {
i
} > self.lazy_expire,
)
})
.flatten()
.collect();
}
self.current_depth = self.max_depth;
}
/// Determines if a [`Move`] at index `idx` is connected to `self.current_root`
/// Returns `false` if `self.current_root` is None
fn is_connected_to_root(&self, idx: usize) -> bool {
if let Some(root) = self.current_root {
let mut current = Some(idx);
while let Some(parent_idx) = current {
if parent_idx == root {
return true;
}
current = self.arena[parent_idx].parent;
}
}
false
}
/// Creates children for a parent (`parent`), returns an iterator it's children's indexes
fn generate_children(
&mut self,
parent_idx: usize,
lazy_children: bool,
) -> Option<impl Iterator<Item = usize>> {
let parent = &self.arena[parent_idx];
// early-exit if a winner for the parent already exists
if parent.winner != Winner::None {
return None;
}
let new_color = !parent.color;
// use [`Board::all_positions`] here instead of [`Board::possible_moves`]
// because we use [`Board::what_if`] later and we want to reduce calls to [`Board::propegate_from_dry`]
let new: Vec<Move> = Board::all_positions()
.flat_map(|(i, j)| {
parent
.board
.what_if(i, j, new_color)
.map(move |x| (i, j, x))
})
.map(|(i, j, new_board)| {
Move::new(
i,
j,
new_board,
new_color,
lazy_children,
self.agent_color,
Some(parent_idx),
)
})
.collect();
// keep the TOP_K children of their magnitude
const TOP_K_CHILDREN: usize = 10;
let start_idx = self.arena.len();
self.arena.extend(new);
let new_indices = start_idx..self.arena.len();
self.arena[parent_idx].children.extend(new_indices.clone());
let mut parent_copy = self.arena[parent_idx].clone();
parent_copy.sort_children(self.arena.as_mut_slice());
self.arena[parent_idx] = parent_copy;
if lazy_children && new_indices.clone().count() > TOP_K_CHILDREN {
for i in new_indices.clone().skip(TOP_K_CHILDREN) {
self.arena[i].lazy_children = true;
}
}
Some(new_indices)
}
/// Given an index from `self.arena`, what depth is it at? 0-indexed
fn depth_of(&self, node_idx: usize) -> usize {
let mut depth = 0;
let mut current = Some(node_idx);
while let Some(parent_idx) = current {
depth += 1;
current = self.arena[parent_idx].parent;
}
depth - 1
}
/// Compute `Move.value`, propegating upwards from the furthest out Moves
/// in the Arena.
fn compute_values(&mut self, indexes: impl Iterator<Item = usize>) {
// PERF! pre-organize all indexes based on what depth they're at
// previously, I did a lookup map based on if a node was visited, still resulted in a full
// O(n) iteration each depth
let mut by_depth: HashMap<usize, Vec<usize>> = HashMap::new();
for idx in indexes {
let depth = self.depth_of(idx);
if let Some(got) = by_depth.get_mut(&depth) {
got.push(idx);
} else {
by_depth.insert(depth, vec![idx]);
}
}
let mut by_depth_vec: Vec<(usize, Vec<usize>)> = by_depth.into_iter().collect();
by_depth_vec.sort_by_key(|x| x.0);
for (depth, nodes) in by_depth_vec {
for idx in nodes {
// TODO! impl dynamic sorting based on children's states, maybe it propegates
// upwards using the `parent` field
// SAFETY! the sort_by_key function should not modify anything
unsafe { &mut (*(self as *mut Self)) }.arena[idx]
.children
// negative because we want the largest value in the first index
// abs so we get the most extreme solutions
// but base on `.value` for recursive behavior
.sort_by_key(|&x| -self.arena[x].value.abs());
let children_value = self.arena[idx]
.children
.iter()
.rev() // rev then reverse so we get an index starting from the back
.enumerate()
// since children are sorted by value, we should weight the first one more
.map(|(i, &child)| self.arena[child].value * ((i + 1) as i128))
.sum::<i128>();
// previously we used `depth` and divided `self_value` by it, idk if this is worth it
// we should really setup some sort of ELO rating for each commit, playing them against
// each other or something, could be cool to benchmark these more subjective things, not
// just performance
self.arena[idx].value = self.arena[idx].self_value as i128 + children_value;
}
}
}
/// Return the best move which is a child of `self.current_root`
pub fn best_move(&self) -> Option<(usize, usize)> {
self.current_root
.and_then(|x| {
self.arena[x]
.children
.iter()
.max_by_key(|&&idx| self.arena[idx].value)
})
.inspect(|&&x| {
assert_eq!(
self.arena[x].color, self.agent_color,
"selected move color should be the same as the color of the agent"
);
})
.map(|&x| self.arena[x].coords())
}
/// Updates `FutureMoves` based on the current state of the board
/// The board is supposed to be after the opposing move
pub fn update_from_board(&mut self, board: &Board) {
let curr_board = self
.arena
.iter()
.enumerate()
.find(|(_, m)| &m.board == board && (m.parent == self.current_root))
.map(|(idx, _)| idx)
.filter(|_| self.current_root.is_some());
if let Some(curr_board_idx) = curr_board {
self.set_root_idx_raw(curr_board_idx);
} else {
self.set_root_from_board(*board);
}
}
/// Clear the arena and create and set a root which contains a Board
pub fn set_root_from_board(&mut self, board: Board) {
self.arena.clear();
self.arena.push(Move::new(
0, // dummy
0, // dummy
board,
!self.agent_color,
false,
self.agent_color,
None,
));
self.set_root_idx_raw(0);
}
/// Update the root based on the coordinate of the move
/// Returns a boolean, `true` if the operation was successful, false if not
#[must_use = "You must check if the root was properly set"]
pub fn update_root_coord(&mut self, i: usize, j: usize) -> bool {
self.arena
.iter()
.enumerate()
.find(|(_, node)| {
node.parent == self.current_root
&& self.current_root.is_some()
&& node.coords() == (i, j)
})
.map(|x| x.0)
// do raw set so we can prune it on the next move (in `update`)
.inspect(|&root| self.update_root_idx_raw(root))
.is_some()
}
/// Update current root without modifying or pruning the Arena
fn update_root_idx_raw(&mut self, idx: usize) {
self.current_root = Some(idx);
self.current_depth -= self.depth_of(idx);
}
/// Update current root index while pruning and extending the tree (also recalculate values)
fn set_root_idx_raw(&mut self, idx: usize) {
self.update_root_idx_raw(idx);
// self.prune_bad_children();
self.refocus_tree();
self.extend_layers();
self.compute_values(0..self.arena.len());
// check arena's consistancy
assert_eq!(self.check_arena().join("\n"), "");
}
/// Checks the consistancy of the Arena (parents and children)
/// returns a vector of errors ([`String`])
pub fn check_arena(&self) -> Vec<String> {
let mut errors = vec![];
for idx in 0..self.arena.len() {
let m = &self.arena[idx];
if let Some(parent) = m.parent {
if !(0..self.arena.len()).contains(&parent) {
errors.push(format!("{}: parent is out of range ({})", idx, parent));
}
if !self.arena[parent].children.contains(&idx) {
errors.push(format!(
"{}: parent ({}) doesn't list {} as child",
idx, parent, idx
));
}
}
for &child_idx in &m.children {
if !(0..self.arena.len()).contains(&child_idx) {
errors.push(format!("{}: parent is out of range ({})", idx, child_idx));
}
if self.arena[child_idx].parent != Some(idx) {
errors.push(format!(
"{}: child ({}) does not list self as parent",
idx, child_idx
));
}
}
}
errors
}
fn prune_bad_children(&mut self) {
const BOTTOM_PERC: f32 = 20.0;
let Some(root) = self.current_root else {
return;
};
let mut children = self.arena[root].children.clone();
children.sort_by_key(|&i| -self.arena[i].value);
let start_len = ((children.len()) as f32 * (1.0 - BOTTOM_PERC)) as usize;
let drained = children.drain(start_len..);
println!("{}", drained.len());
for i in drained {
self.arena[i].parent = None;
}
self.arena[root].children = children;
}
/// Rebuilds the Arena based on `self.current_root`, prunes unrelated nodes
fn refocus_tree(&mut self) {
let Some(root) = self.current_root else {
return;
};
// make sure `root` doesn't reference another node
self.arena[root].parent = None;
let mut retain = vec![false; self.arena.len()];
// stack is going to be AT MAXIMUM, the size of the array,
// so lets just pre-allocate it
let mut stack: Vec<usize> = Vec::with_capacity(self.arena.len());
stack.push(root);
// traverse children of the current root
while let Some(idx) = stack.pop() {
retain[idx] = true;
stack.extend(self.arena[idx].children.iter());
}
let mut index_map = vec![None; self.arena.len()];
let new_start: Vec<(usize, usize, Move)> = retain
.into_iter()
.enumerate() // old_idx
.zip(self.arena.drain(..))
.filter(|&((_, keep), _)| keep) // filter out un-related nodes
.map(|((old_idx, _), node)| (old_idx, node))
.enumerate() // new_idx
.map(|(a, (b, c))| (a, b, c))
.collect();
for &(new_idx, old_idx, _) in &new_start {
index_map[old_idx] = Some(new_idx);
}
self.arena = new_start
.into_iter()
.map(|(_, _, mut node)| {
if let Some(parent) = node.parent.as_mut() {
if let Some(new_parent) = index_map[*parent] {
*parent = new_parent;
} else {
// make sure we don't have dangling parents
node.parent = None;
}
}
for c in node.children.as_mut_slice() {
debug_assert!(
index_map.get(*c).unwrap().is_some(),
"index_map should contain the child's index"
);
*c = unsafe { index_map.get_unchecked(*c).unwrap_unchecked() };
}
node
})
.collect();
self.current_root = index_map[root];
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn prune_tree_test() {
let mut futm = FutureMoves::new(Piece::Black, 0, 0);
futm.arena.push(Move {
i: 0,
j: 0,
board: Board::new(),
winner: Winner::None,
parent: None,
children: vec![1, 3, 4],
value: 0,
self_value: 0,
color: Piece::Black,
lazy_children: false,
});
futm.update_root_idx_raw(0);
// child 1
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
// dummy
futm.arena.push(Move::new(
1234,
1234,
Board::new(),
Piece::White,
false,
Piece::Black,
None,
));
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
assert_eq!(futm.arena_len(), 5);
futm.refocus_tree();
assert_eq!(futm.arena_len(), 4);
assert_eq!(futm.arena[0].children.len(), 3);
assert_ne!(futm.arena[2].i, 1234, "dummy value still exists");
}
#[test]
fn expand_layer_test() {
let mut futm = FutureMoves::new(Piece::Black, 1, 1);
futm.arena.push(Move::new(
0,
0,
Board::new().starting_pos(),
Piece::Black,
false,
Piece::Black,
None,
));
futm.update_root_idx_raw(0);
futm.extend_layers();
assert_eq!(futm.arena_len(), 5);
// move to a child
futm.update_root_idx_raw(1);
futm.refocus_tree();
assert_eq!(futm.arena_len(), 1);
// make sure current_root is properly updated
assert_eq!(futm.current_root, Some(0));
futm.extend_layers();
assert!(
futm.arena_len() > 1,
"extend_layer didn't grow arena after refocus"
);
}
#[test]
fn depth_of_test() {
let mut futm = FutureMoves::new(Piece::Black, 0, 0);
futm.arena.push(Move {
i: 0,
j: 0,
board: Board::new(),
winner: Winner::None,
parent: None,
children: vec![1],
value: 0,
self_value: 0,
color: Piece::Black,
lazy_children: false,
});
futm.update_root_idx_raw(0);
// child 1
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
futm.arena[1].parent = Some(0);
futm.arena[1].children = vec![3];
// dummy
futm.arena.push(Move::new(
1234,
1234,
Board::new(),
Piece::White,
false,
Piece::Black,
None,
));
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
futm.arena[3].parent = Some(1);
futm.arena.push(Move::new(
0,
0,
Board::new(),
Piece::White,
false,
Piece::Black,
Some(0),
));
assert_eq!(futm.depth_of(3), 2);
}
}