othello/src/repr/board.rs

512 lines
16 KiB
Rust

use super::{bitboard::BitBoard, piece::Piece, CoordAxis, CoordPair};
use arrayvec::ArrayVec;
use const_fn::const_fn;
use rand::seq::IteratorRandom;
use std::{cmp::Ordering, fmt};
/// Map of all points on the board against some type T
/// Used to index like so: example[i][j]
/// with each coordinate
pub struct PosMap<T: Default>(ArrayVec<T, { Board::BOARD_AREA as usize }>);
impl<T: Default> PosMap<T> {
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
Self(ArrayVec::from_iter(
(0..Board::BOARD_AREA).map(|_| Default::default()),
))
}
pub fn get(&self, coords: CoordPair) -> &T {
&self.0[coords.0 as usize]
}
pub fn set(&mut self, coords: CoordPair, value: T) {
self.0[coords.0 as usize] = value;
}
}
type PosMapOrig<T> = [[T; Board::BOARD_SIZE as usize]; Board::BOARD_SIZE as usize];
impl<T: Default + Copy> From<PosMapOrig<T>> for PosMap<T> {
fn from(value: PosMapOrig<T>) -> Self {
let mut new = Self::new();
for i in 0..Board::BOARD_SIZE {
for j in 0..Board::BOARD_SIZE {
new.set((i, j).into(), value[i as usize][j as usize]);
}
}
new
}
}
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum Winner {
Player(Piece),
Tie,
None,
}
/// Repersents a Othello game board at a certain space
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Board {
/// [`BitBoard`] containing all white pieces
white_board: BitBoard,
/// [`BitBoard`] containing all black pieces
black_board: BitBoard,
}
impl fmt::Display for Board {
#[allow(clippy::repeat_once)] // clippy gets mad about when PADDING == 1
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let horiz_sep_line = "-".repeat((Self::BOARD_SIZE * 2 + 1) as usize);
// basically calculates the # of digits BOARD_SIZE needs
const PADDING: usize = (Board::BOARD_SIZE - 1).ilog10() as usize + 1;
let space_padding = " ".repeat(PADDING);
// Print numbers at top so the board can be read more easier
write!(f, "{} ", space_padding)?;
for j in (0..Self::BOARD_SIZE).rev() {
write!(f, "{:0PADDING$} ", j)?;
}
writeln!(f)?;
for i in (0..Self::BOARD_SIZE).rev() {
writeln!(f, "{}{}", space_padding, horiz_sep_line)?;
write!(f, "{:0PADDING$}|", i)?;
for j in (0..Self::BOARD_SIZE).rev() {
write!(
f,
"{}|",
self.get((i, j).into())
.as_ref()
.map(Piece::symbol)
.unwrap_or(' ')
)?;
}
writeln!(f)?;
}
// put a line at the bottom of the board too
writeln!(f, " {}", horiz_sep_line)?;
// Print the current score
write!(
f,
"{}",
[Piece::White, Piece::Black]
.map(|p| format!("{} Score: {}\n", p.text(), self.count(p)))
.concat()
)?;
Ok(())
}
}
impl fmt::Debug for Board {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self)
}
}
impl Board {
pub const BOARD_SIZE: CoordAxis = 8;
/// Area of the board
pub const BOARD_AREA: CoordAxis = Self::BOARD_SIZE.pow(2);
/// Create a new empty board
#[allow(clippy::new_without_default)]
pub const fn new() -> Self {
Self {
white_board: BitBoard::new(),
black_board: BitBoard::new(),
}
}
pub fn random(steps: usize) -> Self {
let mut new = Self::new().starting_pos();
let mut p = Piece::Black;
let mut rng = rand::rng();
for _ in 0..steps {
if let Some(m) = new.possible_moves(p).choose(&mut rng) {
new.place_unchecked(m, p);
}
p = !p;
}
new
}
/// Starting position
pub const fn starting_pos(mut self) -> Self {
let hf = Self::BOARD_SIZE / 2;
self.place_unchecked(CoordPair::from_axes(hf - 1, hf - 1), Piece::White);
self.place_unchecked(CoordPair::from_axes(hf, hf - 1), Piece::Black);
self.place_unchecked(CoordPair::from_axes(hf - 1, hf), Piece::Black);
self.place_unchecked(CoordPair::from_axes(hf, hf), Piece::White);
self
}
/// Provides an iterator of all possible positions on the board
pub fn all_positions() -> impl Iterator<Item = CoordPair> {
(0..Self::BOARD_SIZE).flat_map(|i| (0..Self::BOARD_SIZE).map(move |j| (i, j).into()))
}
/// Returns an iterator of all possible moves a `color` can make
pub fn possible_moves(&self, color: Piece) -> impl Iterator<Item = CoordPair> + use<'_> {
Self::all_positions().filter(move |&coord| self.would_prop(coord, color))
}
/// Get a reference to a backing [`BitBoard`]
const fn board(&self, color: Piece) -> &BitBoard {
match color {
Piece::Black => &self.black_board,
Piece::White => &self.white_board,
}
}
/// Get a mutable reference to a backing [`BitBoard`]
const fn board_mut(&mut self, color: Piece) -> &mut BitBoard {
match color {
Piece::Black => &mut self.black_board,
Piece::White => &mut self.white_board,
}
}
pub const fn get_piece(&self, coord: CoordPair, color: Piece) -> bool {
self.board(color).get(coord)
}
/// Returns the color of a place on the [`Board`] at a position
pub const fn get(&self, coord: CoordPair) -> Option<Piece> {
if self.get_piece(coord, Piece::White) {
Some(Piece::White)
} else if self.get_piece(coord, Piece::Black) {
Some(Piece::Black)
} else {
None
}
}
/// Place a piece without checking for propegation of validity
/// only pub for setting up benchmark
pub const fn place_unchecked(&mut self, coord: CoordPair, piece: Piece) {
self.board_mut(piece).set(coord, true);
self.board_mut(piece.flip()).set(coord, false);
}
const fn delete(&mut self, coord: CoordPair) {
self.board_mut(Piece::White).set(coord, false);
self.board_mut(Piece::Black).set(coord, false);
}
/// Return a modified [`Board`] with the piece placed at a position
/// Returns None if the move was invalid
pub fn what_if(&self, coord: CoordPair, piece: Piece) -> Result<Self, &'static str> {
// extract check here to avoid copy
if self.get(coord).is_some() {
return Err("position is occupied");
}
let mut self_copy = *self;
self_copy.place(coord, piece).map(|_| self_copy)
}
/// Returns a bool which represents whether or not a move would propegate and be valid
pub fn would_prop(&self, coord: CoordPair, piece: Piece) -> bool {
self.get(coord).is_none() && self.propegate_from_dry(coord, piece).count() > 0
}
pub fn place(&mut self, coord: CoordPair, piece: Piece) -> Result<(), &'static str> {
if self.get(coord).is_some() {
return Err("position is occupied");
}
self.place_unchecked(coord, piece);
if self.propegate_from(coord) == 0 {
self.delete(coord);
Err("move would not propegate")
} else {
Ok(())
}
}
/// Propegate the board and captures starting from a specific position
fn propegate_from(&mut self, coord: CoordPair) -> usize {
let Some(starting_color) = self.get(coord) else {
return 0;
};
let flip_mask = self.propegate_from_dry(coord, starting_color);
let count = flip_mask.count();
// Apply the flips
*self.board_mut(starting_color) |= flip_mask;
*self.board_mut(starting_color.flip()) &= !flip_mask;
count
}
/// Propegate piece captures originating from (i, j)
/// DO NOT USE THIS ALONE, this should be called as a part of
/// [`Board::place`] or [`Board::place_and_prop_unchecked`]
fn propegate_from_dry(&self, coords: CoordPair, starting_color: Piece) -> BitBoard {
let player_board = *self.board(starting_color);
let opponent_board = *self.board(starting_color.flip());
let mut flip_mask = BitBoard::new();
let seed = BitBoard::from_coord(coords);
for dir in BitBoard::DIRECTIONS {
let mut current = seed;
let mut temp_flips = BitBoard::new();
// Expand in direction until edge or non-opponent piece
loop {
current = dir(&current);
if current.count() == 0 || !current.intersects(opponent_board) {
break;
}
temp_flips |= current;
}
// If terminated on a player piece, keep the flips
if current.intersects(player_board) {
flip_mask |= temp_flips;
}
}
flip_mask
}
/// Count the number of a type of [`Piece`] on the board
pub const fn count(&self, piece: Piece) -> usize {
self.board(piece).count()
}
/// Get the "net score" of a player
/// Formula: `net_score = Score_player - Score_opponent`
pub const fn net_score(&self, piece: Piece) -> i16 {
self.count(piece) as i16 - self.count(piece.flip()) as i16
}
/// Returns the winner of the board (if any)
pub fn game_winner(&self) -> Winner {
// Wikipedia: `Players take alternate turns. If one player cannot make a valid move, play passes back to the other player. The game ends when the grid has filled up or if neither player can make a valid move.`
if self.possible_moves(Piece::Black).next().is_some()
|| self.possible_moves(Piece::White).next().is_some()
{
// player can still make a move, there is no winner
return Winner::None;
}
match self.count(Piece::White).cmp(&self.count(Piece::Black)) {
Ordering::Greater => Winner::Player(Piece::White), // White win
Ordering::Less => Winner::Player(Piece::Black), // Black win
Ordering::Equal => Winner::Tie,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn place_and_get() {
let mut board = Board::new();
assert_eq!(board.get((0, 0).into()), None);
board.place_unchecked((0, 0).into(), Piece::Black);
assert_eq!(board.get((0, 0).into()), Some(Piece::Black));
}
#[test]
fn place_and_capture_simple() {
let mut board = Board::new();
board.place_unchecked((0, 0).into(), Piece::Black);
board.place_unchecked((0, 1).into(), Piece::White);
assert_eq!(board.place((0, 2).into(), Piece::Black), Ok(()));
assert_eq!(board.get((0, 1).into()), Some(Piece::Black));
}
#[test]
fn failed_capture() {
let mut board = Board::new();
board.place_unchecked((0, 0).into(), Piece::Black);
board.place_unchecked((0, 2).into(), Piece::White);
// should fail
assert_ne!(board.place((0, 3).into(), Piece::Black), Ok(()));
assert_eq!(
board.get((0, 1).into()),
None,
"(0, 1) was overridden even though it's an empty space"
);
}
#[test]
fn long_capture_horiz() {
let mut board = Board::new();
board.place_unchecked((0, 0).into(), Piece::Black);
for j in 1..=6 {
board.place_unchecked((0, j).into(), Piece::White);
}
assert_eq!(board.place((0, 7).into(), Piece::Black), Ok(()));
for j in 2..=6 {
assert_eq!(
board.get((0, j).into()),
Some(Piece::Black),
"should be black at: ({}, {})",
0,
j
);
}
}
#[test]
fn long_capture_vert() {
let mut board = Board::new();
board.place_unchecked((0, 0).into(), Piece::Black);
for i in 1..=6 {
board.place_unchecked((i, 0).into(), Piece::White);
}
assert_eq!(board.place((7, 0).into(), Piece::Black), Ok(()));
for i in 2..=6 {
assert_eq!(
board.get((i, 0).into()),
Some(Piece::Black),
"should be black at: ({}, {})",
i,
0
);
}
}
// Test corner capture from top-left corner
#[test]
fn corner_capture_top_left() {
let mut board = Board::new();
// Black pieces at (2, 2) and (0, 0)
board.place_unchecked((1, 1).into(), Piece::White); // to be captured
board.place_unchecked((2, 2).into(), Piece::Black);
assert_eq!(board.place((0, 0).into(), Piece::Black), Ok(()));
// Capture white piece at (1,1)
assert_eq!(board.get((1, 1).into()), Some(Piece::Black), "\n{}", board);
}
// Test corner capture from top-right corner
#[test]
fn corner_capture_top_right() {
let mut board = Board::new();
// Black pieces at (0, 7) and (2, 5)
board.place_unchecked((0, 7).into(), Piece::Black);
board.place_unchecked((1, 6).into(), Piece::White); // to be captured
assert_eq!(board.place((2, 5).into(), Piece::Black), Ok(()));
// Capture white piece at (1, 6)
assert_eq!(board.get((1, 6).into()), Some(Piece::Black), "\n{}", board);
}
// Test corner capture from bottom-left corner
#[test]
fn corner_capture_bottom_left() {
let mut board = Board::new();
// Black pieces at (7, 0) and (5, 2)
board.place_unchecked((7, 0).into(), Piece::Black);
board.place_unchecked((6, 1).into(), Piece::White); // to be captured
assert_eq!(board.place((5, 2).into(), Piece::Black), Ok(()));
// Capture white piece at (6, 1)
assert_eq!(board.get((6, 1).into()), Some(Piece::Black), "\n{}", board);
}
// Test corner capture from bottom-right corner
#[test]
fn corner_capture_bottom_right() {
let mut board = Board::new();
// Black pieces at (7, 7) and (5, 5)
board.place_unchecked((7, 7).into(), Piece::Black);
board.place_unchecked((6, 6).into(), Piece::White); // to be captured
assert_eq!(board.place((5, 5).into(), Piece::Black), Ok(()));
// Capture white piece at (6, 6)
assert_eq!(board.get((6, 6).into()), Some(Piece::Black), "\n{}", board);
}
// Test capture from top-left corner (horizontal)
#[test]
fn capture_top_left_horiz() {
let mut board = Board::new();
// Create a scenario where a capture should happen horizontally from (0, 0)
board.place_unchecked((0, 0).into(), Piece::Black);
board.place_unchecked((0, 1).into(), Piece::White); // to be captured
assert_eq!(board.place((0, 2).into(), Piece::Black), Ok(()));
assert_eq!(board.get((0, 1).into()), Some(Piece::Black), "\n{}", board);
}
// Test capture from top-right corner (horizontal)
#[test]
fn capture_top_right_horiz() {
let mut board = Board::new();
// Create a scenario where a capture should happen horizontally from (0, 7)
board.place_unchecked((0, 7).into(), Piece::Black);
board.place_unchecked((0, 6).into(), Piece::White); // to be captured
assert_eq!(board.place((0, 5).into(), Piece::Black), Ok(()));
assert_eq!(board.get((0, 6).into()), Some(Piece::Black), "\n{}", board);
}
// Test capture from top-left corner (vertical)
#[test]
fn capture_top_left_vert() {
let mut board = Board::new();
// Create a scenario where a capture should happen vertically from (0, 0)
board.place_unchecked((0, 0).into(), Piece::Black);
board.place_unchecked((1, 0).into(), Piece::White); // to be captured
assert_eq!(board.place((2, 0).into(), Piece::Black), Ok(()));
assert_eq!(board.get((1, 0).into()), Some(Piece::Black), "\n{}", board);
}
// Test capture from bottom-left corner (vertical)
#[test]
fn capture_bottom_left_vert() {
let mut board = Board::new();
// Create a scenario where a capture should happen vertically from (7, 0)
board.place_unchecked((7, 0).into(), Piece::Black);
board.place_unchecked((6, 0).into(), Piece::White); // to be captured
assert_eq!(board.place((5, 0).into(), Piece::Black), Ok(()));
assert_eq!(board.get((6, 0).into()), Some(Piece::Black), "\n{}", board);
}
}