cleanup
This commit is contained in:
parent
f76c9f7401
commit
bec6340607
5
TODO.md
5
TODO.md
@ -5,4 +5,7 @@
|
||||
- Tried [ArrayFire-rust](https://github.com/arrayfire/arrayfire-rust) didn't work well, looking for another library
|
||||
- Try using [emu](https://github.com/calebwin/emu) (seems to be a very good option)
|
||||
- sin and cos optimizations
|
||||
- sin/cos table?
|
||||
- sin/cos table?
|
||||
- Make colisions for walls of grid
|
||||
- Add config and cmd arguments when running the binary to adjust simulation settings
|
||||
- Rewrite `grid.rs`
|
||||
21
src/blur.rs
21
src/blur.rs
@ -21,8 +21,7 @@ impl Blur {
|
||||
}
|
||||
}
|
||||
|
||||
/// Blur an image with 2 box filter passes. The result will be written to the src slice, while
|
||||
/// the buf slice is used as a scratch space.
|
||||
// Blur an image with 2 box filter passes. The result will be written to the src slice, while the buf slice is used as a scratch space.
|
||||
pub fn run(
|
||||
&mut self,
|
||||
src: &mut [f32],
|
||||
@ -37,8 +36,7 @@ impl Blur {
|
||||
self.box_blur(src, buf, width, height, boxes[1], decay);
|
||||
}
|
||||
|
||||
/// Approximate 1D Gaussian filter of standard deviation sigma with N box filter passes. Each
|
||||
/// element in the output array contains the radius of the box filter for the corresponding pass.
|
||||
// Approximate 1D Gaussian filter of standard deviation sigma with N box filter passes. Each element in the output array contains the radius of the box filter for the corresponding pass.
|
||||
fn boxes_for_gaussian<const N: usize>(sigma: f32) -> ([usize; N]) {
|
||||
let w_ideal = (12.0 * sigma * sigma / N as f32 + 1.0).sqrt();
|
||||
let mut w = w_ideal as usize;
|
||||
@ -54,8 +52,7 @@ impl Blur {
|
||||
result
|
||||
}
|
||||
|
||||
/// Perform one pass of the 2D box filter of the given radius. The result will be written to the
|
||||
/// src slice, while the buf slice is used as a scratch space.
|
||||
// Perform one pass of the 2D box filter of the given radius. The result will be written to the src slice, while the buf slice is used as a scratch space.
|
||||
fn box_blur(
|
||||
&mut self,
|
||||
src: &mut [f32],
|
||||
@ -69,15 +66,14 @@ impl Blur {
|
||||
self.box_blur_v(buf, src, width, height, radius, decay);
|
||||
}
|
||||
|
||||
/// Perform one pass of the 1D box filter of the given radius along x axis.
|
||||
// Perform one pass of the 1D box filter of the given radius along x axis.
|
||||
fn box_blur_h(&mut self, src: &[f32], dst: &mut [f32], width: usize, radius: usize) {
|
||||
let weight = 1.0 / (2 * radius + 1) as f32;
|
||||
|
||||
src.par_chunks_exact(width)
|
||||
.zip(dst.par_chunks_exact_mut(width))
|
||||
.for_each(|(src_row, dst_row)| {
|
||||
// First we build a value for the beginning of each row. We assume periodic boundary
|
||||
// conditions, so we need to push the left index to the opposite side of the row.
|
||||
// First we build a value for the beginning of each row. We assume periodic boundary conditions, so we need to push the left index to the opposite side of the row.
|
||||
let width_sub_radius = width - radius;
|
||||
let mut value = src_row[width - radius - 1];
|
||||
for j in 0..radius {
|
||||
@ -93,8 +89,7 @@ impl Blur {
|
||||
})
|
||||
}
|
||||
|
||||
/// Perform one pass of the 1D box filter of the given radius along y axis. Applies the decay
|
||||
/// factor to the destination buffer.
|
||||
// Perform one pass of the 1D box filter of the given radius along y axis. Applies the decay factor to the destination buffer.
|
||||
fn box_blur_v(
|
||||
&mut self,
|
||||
src: &[f32],
|
||||
@ -106,9 +101,7 @@ impl Blur {
|
||||
) {
|
||||
let weight = decay / (2 * radius + 1) as f32;
|
||||
|
||||
// We don't replicate the horizontal filter logic because of the cache-unfriendly memory
|
||||
// access patterns of sequential iteration over individual columns. Instead, we iterate over
|
||||
// rows via loop interchange.
|
||||
// We don't replicate the horizontal filter logic because of the cache-unfriendly memory access patterns of sequential iteration over individual columns. Instead, we iterate over rows via loop interchange.
|
||||
let height_sub_radius = height - radius;
|
||||
let offset = (height_sub_radius - 1) * width;
|
||||
self.row_buffer
|
||||
|
||||
16
src/grid.rs
16
src/grid.rs
@ -4,7 +4,7 @@ use rand::{distributions::Uniform, Rng};
|
||||
|
||||
use std::fmt::{Display, Formatter};
|
||||
|
||||
/// A population configuration.
|
||||
// A population configuration.
|
||||
#[derive(Debug)]
|
||||
pub struct PopulationConfig {
|
||||
pub sensor_distance: f32,
|
||||
@ -58,7 +58,7 @@ impl PopulationConfig {
|
||||
const DECAY_FACTOR_MIN: f32 = 0.1;
|
||||
const DECAY_FACTOR_MAX: f32 = 0.1;
|
||||
|
||||
/// Construct a random configuration.
|
||||
// Construct a random configuration.
|
||||
pub fn new<R: Rng + ?Sized>(rng: &mut R) -> Self {
|
||||
PopulationConfig {
|
||||
sensor_distance: rng.gen_range(Self::SENSOR_DISTANCE_MIN..=Self::SENSOR_DISTANCE_MAX),
|
||||
@ -76,7 +76,7 @@ impl PopulationConfig {
|
||||
}
|
||||
}
|
||||
|
||||
/// A 2D grid with a scalar value per each grid block. Each grid is occupied by a single population, hence we store the population config inside the grid.
|
||||
// A 2D grid with a scalar value per each grid block. Each grid is occupied by a single population, hence we store the population config inside the grid.
|
||||
#[derive(Debug)]
|
||||
pub struct Grid {
|
||||
pub config: PopulationConfig,
|
||||
@ -104,7 +104,7 @@ impl Clone for Grid {
|
||||
}
|
||||
|
||||
impl Grid {
|
||||
/// Create a new grid filled with random floats in the [0.0..1.0) range.
|
||||
// Create a new grid filled with random floats in the [0.0..1.0) range.
|
||||
pub fn new<R: Rng + ?Sized>(width: usize, height: usize, rng: &mut R) -> Self {
|
||||
if !width.is_power_of_two() || !height.is_power_of_two() {
|
||||
panic!("Grid dimensions must be a power of two.");
|
||||
@ -122,7 +122,7 @@ impl Grid {
|
||||
}
|
||||
}
|
||||
|
||||
/// Truncate x and y and return a corresponding index into the data slice.
|
||||
// Truncate x and y and return a corresponding index into the data slice.
|
||||
fn index(&self, x: f32, y: f32) -> usize {
|
||||
// x/y can come in negative, hence we shift them by width/height.
|
||||
let i = (x + self.width as f32) as usize & (self.width - 1);
|
||||
@ -130,18 +130,18 @@ impl Grid {
|
||||
j * self.width + i
|
||||
}
|
||||
|
||||
/// Get the buffer value at a given position. The implementation effectively treats data as periodic, hence any finite position will produce a value.
|
||||
// Get the buffer value at a given position. The implementation effectively treats data as periodic, hence any finite position will produce a value.
|
||||
pub fn get_buf(&self, x: f32, y: f32) -> f32 {
|
||||
self.buf[self.index(x, y)]
|
||||
}
|
||||
|
||||
/// Add a value to the grid data at a given position.
|
||||
// Add a value to the grid data at a given position.
|
||||
pub fn deposit(&mut self, x: f32, y: f32) {
|
||||
let idx = self.index(x, y);
|
||||
self.data[idx] += self.config.deposition_amount;
|
||||
}
|
||||
|
||||
/// Diffuse grid data and apply a decay multiplier.
|
||||
// Diffuse grid data and apply a decay multiplier.
|
||||
pub fn diffuse(&mut self, radius: usize) {
|
||||
self.blur.run(
|
||||
&mut self.data,
|
||||
|
||||
@ -5,7 +5,8 @@ fn main() {
|
||||
let n_iterations = 2048;
|
||||
|
||||
// Size of grid and pictures
|
||||
let (width, height) = (256, 256);
|
||||
// let (width, height) = (256, 256);
|
||||
let (width, height) = (1024, 1024);
|
||||
|
||||
// # of agents
|
||||
let n_particles = 1 << 20;
|
||||
|
||||
23
src/math.rs
23
src/math.rs
@ -1,18 +1,13 @@
|
||||
#[inline(always)]
|
||||
fn to_radians(x: f32) -> f32 {
|
||||
x * (std::f32::consts::PI / 180.0)
|
||||
}
|
||||
|
||||
/// Previously from trig.rs
|
||||
/// From https://bits.stephan-brumme.com/absFloat.html
|
||||
// Previously from trig.rs
|
||||
// From https://bits.stephan-brumme.com/absFloat.html
|
||||
#[allow(dead_code)]
|
||||
#[inline(always)]
|
||||
fn abs(x: f32) -> f32 {
|
||||
return f32::from_bits(x.to_bits() & 0x7FFF_FFFF);
|
||||
}
|
||||
|
||||
/// Previously from trig.rs
|
||||
/// Branchless floor implementation
|
||||
// Previously from trig.rs
|
||||
// Branchless floor implementation
|
||||
#[allow(dead_code)]
|
||||
#[inline(always)]
|
||||
fn floor(x: f32) -> f32 {
|
||||
@ -21,9 +16,9 @@ fn floor(x: f32) -> f32 {
|
||||
return x_trunc;
|
||||
}
|
||||
|
||||
/// Previously from trig.rs
|
||||
/// Approximates `cos(x)` in radians with the maximum error of `0.002`
|
||||
/// https://stackoverflow.com/posts/28050328/revisions
|
||||
// Previously from trig.rs
|
||||
// Approximates `cos(x)` in radians with the maximum error of `0.002`
|
||||
// https://stackoverflow.com/posts/28050328/revisions
|
||||
#[allow(dead_code)]
|
||||
#[inline(always)]
|
||||
pub fn cos(mut x: f32) -> f32 {
|
||||
@ -35,8 +30,8 @@ pub fn cos(mut x: f32) -> f32 {
|
||||
return x;
|
||||
}
|
||||
|
||||
/// Previously from trig.rs
|
||||
/// Approximates `sin(x)` in radians with the maximum error of `0.002`
|
||||
// Previously from trig.rs
|
||||
// Approximates `sin(x)` in radians with the maximum error of `0.002`
|
||||
#[allow(dead_code)]
|
||||
#[inline(always)]
|
||||
pub fn sin(x: f32) -> f32 {
|
||||
|
||||
13
src/model.rs
13
src/model.rs
@ -11,12 +11,11 @@ use rayon::prelude::*;
|
||||
use itertools::multizip;
|
||||
use std::f32::consts::TAU;
|
||||
use std::time::{Instant};
|
||||
use rayon::iter::{ParallelIterator,};
|
||||
use rayon::iter::ParallelIterator;
|
||||
use indicatif::{ParallelProgressIterator, ProgressBar, ProgressStyle};
|
||||
use std::path::Path;
|
||||
|
||||
/// A single Physarum agent. The x and y positions are continuous, hence we use floating point
|
||||
/// numbers instead of integers.
|
||||
// A single Physarum agent. The x and y positions are continuous, hence we use floating point numbers instead of integers.
|
||||
#[derive(Debug)]
|
||||
struct Agent {
|
||||
x: f32,
|
||||
@ -27,7 +26,7 @@ struct Agent {
|
||||
}
|
||||
|
||||
impl Agent {
|
||||
/// Construct a new agent with random parameters.
|
||||
// Construct a new agent with random parameters.
|
||||
fn new<R: Rng + ?Sized>(width: usize, height: usize, id: usize, rng: &mut R, i: usize) -> Self {
|
||||
let (x, y, angle) = rng.gen::<(f32, f32, f32)>();
|
||||
Agent {
|
||||
@ -107,7 +106,7 @@ impl PartialEq for Agent {
|
||||
}
|
||||
|
||||
|
||||
/// Top-level simulation class.
|
||||
// Top-level simulation class.
|
||||
pub struct Model {
|
||||
// Physarum agents.
|
||||
agents: Vec<Agent>,
|
||||
@ -144,7 +143,7 @@ impl Model {
|
||||
println!("Attraction table: {:#?}", self.attraction_table);
|
||||
}
|
||||
|
||||
/// Construct a new model with random initial conditions and random configuration.
|
||||
// Construct a new model with random initial conditions and random configuration.
|
||||
pub fn new(
|
||||
width: usize,
|
||||
height: usize,
|
||||
@ -190,7 +189,7 @@ impl Model {
|
||||
}
|
||||
|
||||
|
||||
/// Simulates `steps` # of steps
|
||||
// Simulates `steps` # of steps
|
||||
#[inline]
|
||||
pub fn run(&mut self, steps: usize) {
|
||||
let debug: bool = false;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user