proper doc comments

This commit is contained in:
Simon Gardling 2025-03-27 14:53:36 -04:00
parent 50e85dec90
commit eee266979c
Signed by: titaniumtown
GPG Key ID: 9AB28AC10ECE533D
7 changed files with 27 additions and 31 deletions

View File

@ -4,7 +4,7 @@ use rand::{seq::SliceRandom, Rng};
use std::f32::consts::TAU;
use std::fmt::{Display, Formatter};
// A single Physarum agent. The x and y positions are continuous, hence we use floating point numbers instead of integers.
/// A single Physarum agent. The x and y positions are continuous, hence we use floating point numbers instead of integers.
#[derive(Debug, Clone, PartialEq)]
pub struct Agent {
pub x: f32,
@ -21,7 +21,7 @@ impl Display for Agent {
}
impl Agent {
// Construct a new agent with random parameters.
/// Construct a new agent with random parameters.
pub fn new<R: Rng + ?Sized>(
width: usize,
height: usize,
@ -39,7 +39,7 @@ impl Agent {
}
}
// Tick an agent
/// Tick an agent
pub fn tick(
&mut self,
buf: &Buf,

View File

@ -13,7 +13,7 @@ impl Blur {
}
}
// Blur an image with 2 box filter passes. The result will be written to the src slice, while the buf slice is used as a scratch space.
/// Blur an image with 2 box filter passes. The result will be written to the src slice, while the buf slice is used as a scratch space.
pub fn run(
&mut self,
src: &mut [f32],
@ -28,7 +28,7 @@ impl Blur {
self.box_blur(src, buf, width, height, boxes[1], decay);
}
// Approximate 1D Gaussian filter of standard deviation sigma with N box filter passes. Each element in the output array contains the radius of the box filter for the corresponding pass.
/// Approximate 1D Gaussian filter of standard deviation sigma with N box filter passes. Each element in the output array contains the radius of the box filter for the corresponding pass.
fn boxes_for_gaussian<const N: usize>(sigma: f32) -> [usize; N] {
let w_ideal = (12.0 * sigma * sigma / N as f32 + 1.0).sqrt();
let mut w = w_ideal as usize;
@ -44,7 +44,7 @@ impl Blur {
result
}
// Perform one pass of the 2D box filter of the given radius. The result will be written to the src slice, while the buf slice is used as a scratch space.
/// Perform one pass of the 2D box filter of the given radius. The result will be written to the src slice, while the buf slice is used as a scratch space.
fn box_blur(
&mut self,
src: &mut [f32],
@ -58,7 +58,7 @@ impl Blur {
self.box_blur_v(buf, src, width, height, radius, decay);
}
// Perform one pass of the 1D box filter of the given radius along x axis.
/// Perform one pass of the 1D box filter of the given radius along x axis.
fn box_blur_h(&mut self, src: &[f32], dst: &mut [f32], width: usize, radius: usize) {
let weight = 1.0 / (2 * radius + 1) as f32;
@ -81,7 +81,7 @@ impl Blur {
})
}
// Perform one pass of the 1D box filter of the given radius along y axis. Applies the decay factor to the destination buffer.
/// Perform one pass of the 1D box filter of the given radius along y axis. Applies the decay factor to the destination buffer.
fn box_blur_v(
&mut self,
src: &[f32],

View File

@ -14,12 +14,12 @@ impl Buf {
}
}
// Truncate x and y and return a corresponding index into the data slice.
/// Truncate x and y and return a corresponding index into the data slice.
const fn index(&self, x: f32, y: f32) -> usize {
crate::util::index(self.width, self.height, x, y)
}
// Get the buffer value at a given position. The implementation effectively treats data as periodic, hence any finite position will produce a value.
/// Get the buffer value at a given position. The implementation effectively treats data as periodic, hence any finite position will produce a value.
pub fn get_buf(&self, x: f32, y: f32) -> f32 {
self.buf[self.index(x, y)]
}

View File

@ -4,7 +4,7 @@ use rand::{distributions::Uniform, Rng};
use rayon::{iter::ParallelIterator, prelude::*};
use std::fmt::{Display, Formatter};
// A population configuration.
/// A population configuration.
#[derive(Debug, Clone, Copy)]
pub struct PopulationConfig {
pub sensor_distance: f32,
@ -23,7 +23,7 @@ impl Display for PopulationConfig {
}
impl PopulationConfig {
// Construct a random configuration.
/// Construct a random configuration.
pub fn new<R: Rng + ?Sized>(rng: &mut R) -> Self {
PopulationConfig {
sensor_distance: rng.gen_range(0.0..=64.0),
@ -53,7 +53,7 @@ pub struct Grid {
}
impl Grid {
// Create a new grid filled with random floats in the [0.0..1.0) range.
/// Create a new grid filled with random floats in the [0.0..1.0) range.
pub fn new<R: Rng + ?Sized>(
width: usize,
height: usize,
@ -74,18 +74,18 @@ impl Grid {
}
}
// Truncate x and y and return a corresponding index into the data slice.
/// Truncate x and y and return a corresponding index into the data slice.
const fn index(&self, x: f32, y: f32) -> usize {
crate::util::index(self.width, self.height, x, y)
}
// Add a value to the grid data at a given position.
/// Add a value to the grid data at a given position.
pub fn deposit(&mut self, x: f32, y: f32) {
let idx = self.index(x, y);
self.data[idx] += self.config.deposition_amount;
}
// Diffuse grid data and apply a decay multiplier.
/// Diffuse grid data and apply a decay multiplier.
pub fn diffuse(&mut self, radius: usize) {
self.blur.run(
&mut self.data,

View File

@ -12,7 +12,7 @@ pub struct ThinGridData {
}
impl ThinGridData {
// Convert Grid to ThinGridData
/// Convert Grid to ThinGridData
pub fn new_from_grid(in_grid: &Grid) -> Self {
ThinGridData {
width: in_grid.width,
@ -22,13 +22,10 @@ impl ThinGridData {
}
pub fn new_from_grid_vec(in_grids: &[Grid]) -> Vec<Self> {
in_grids
.iter()
.map(Self::new_from_grid)
.collect()
in_grids.iter().map(Self::new_from_grid).collect()
}
// from grid.rs (needed in image gen)
/// from grid.rs (needed in image gen)
pub fn quantile(&self, fraction: f32) -> f32 {
let index = if (fraction - 1.0_f32).abs() < f32::EPSILON {
self.data.len() - 1

View File

@ -10,21 +10,21 @@ use rand_distr::{Distribution, Normal};
use rayon::{iter::ParallelIterator, prelude::*};
use std::time::Instant;
// Top-level simulation class.
/// Top-level simulation class.
pub struct Model {
// per-population grid (one for each population)
/// per-population grid (one for each population)
population_grids: Vec<Grid>,
// Attraction table governs interaction across populations
/// Attraction table governs interaction across populations
attraction_table: Vec<Vec<f32>>,
// Global grid diffusivity.
/// Global grid diffusivity.
diffusivity: usize,
// Current model iteration.
/// Current model iteration.
iteration: usize,
// Color palette
/// Color palette
palette: Palette,
time_per_agent_list: Vec<f64>,
@ -44,7 +44,7 @@ impl Model {
println!("Attraction table: {:#?}", self.attraction_table);
}
// Construct a new model with random initial conditions and random configuration.
/// Construct a new model with random initial conditions and random configuration.
pub fn new(
width: usize,
height: usize,
@ -132,7 +132,6 @@ impl Model {
);
}
// Accessors for rendering
pub fn population_grids(&self) -> &[Grid] {
&self.population_grids
}

View File

@ -3,7 +3,7 @@ pub fn wrap(x: f32, max: f32) -> f32 {
x - max * ((x > max) as i32 as f32 - (x < 0.0_f32) as i32 as f32)
}
// Truncate x and y and return a corresponding index into the data slice.
/// Truncate x and y and return a corresponding index into the data slice.
#[inline]
pub const fn index(width: usize, height: usize, x: f32, y: f32) -> usize {
// x/y can come in negative, hence we shift them by width/height.