physarum/src/model.rs
2025-03-28 10:41:23 -04:00

141 lines
4.5 KiB
Rust

use crate::{
agent::Agent,
grid::{combine, Grid},
palette::{random_palette, Palette},
};
use indicatif::{ProgressBar, ProgressStyle};
use rand_distr::{Distribution, Normal};
use rayon::{iter::ParallelIterator, prelude::*};
use std::time::Instant;
/// Top-level simulation class.
pub struct Model {
/// per-population grid (one for each population)
population_grids: Vec<Grid>,
/// Attraction table governs interaction across populations
attraction_table: Vec<Vec<f32>>,
/// Global grid diffusivity.
diffusivity: usize,
/// Current model iteration.
iteration: usize,
/// Color palette
palette: Palette,
time_per_agent_list: Vec<f64>,
time_per_step_list: Vec<f64>,
}
impl Model {
const ATTRACTION_FACTOR_MEAN: f32 = 1.0;
const ATTRACTION_FACTOR_STD: f32 = 0.1;
const REPULSION_FACTOR_MEAN: f32 = -1.0;
const REPULSION_FACTOR_STD: f32 = 0.1;
pub fn print_configurations(&self) {
for (i, grid) in self.population_grids.iter().enumerate() {
println!("Grid {}: {}", i, grid.config);
}
println!("Attraction table: {:#?}", self.attraction_table);
}
/// Construct a new model with random initial conditions and random configuration.
pub fn new(
width: usize,
height: usize,
n_particles: usize,
n_populations: usize,
diffusivity: usize,
) -> Self {
let particles_per_grid = (n_particles as f64 / n_populations as f64).ceil() as usize;
let _n_particles = particles_per_grid * n_populations;
let mut rng = rand::rng();
let attraction_distr =
Normal::new(Self::ATTRACTION_FACTOR_MEAN, Self::ATTRACTION_FACTOR_STD).unwrap();
let repulstion_distr =
Normal::new(Self::REPULSION_FACTOR_MEAN, Self::REPULSION_FACTOR_STD).unwrap();
let mut attraction_table = Vec::with_capacity(n_populations);
for i in 0..n_populations {
attraction_table.push(Vec::with_capacity(n_populations));
for j in 0..n_populations {
attraction_table[i].push(if i == j {
attraction_distr.sample(&mut rng)
} else {
repulstion_distr.sample(&mut rng)
});
}
}
let mut grids: Vec<Grid> = Vec::new();
for _ in 0..n_populations {
let agents = (0..particles_per_grid)
.map(|_| Agent::new(width, height, &mut rng))
.collect();
grids.push(Grid::new(width, height, &mut rng, agents));
}
Model {
population_grids: grids,
attraction_table,
diffusivity,
iteration: 0,
palette: random_palette(),
time_per_agent_list: Vec::new(),
time_per_step_list: Vec::new(),
}
}
pub fn step(&mut self) {
combine(&mut self.population_grids, &self.attraction_table);
let agents_tick_time = Instant::now();
self.population_grids.par_iter_mut().for_each(|grid| {
grid.tick();
grid.diffuse(self.diffusivity);
});
let agents_tick_elapsed = agents_tick_time.elapsed().as_millis() as f64;
let agents_num: usize = self.population_grids.iter().map(|g| g.agents.len()).sum();
let ms_per_agent = agents_tick_elapsed / agents_num as f64;
self.time_per_agent_list.push(ms_per_agent);
self.time_per_step_list.push(agents_tick_elapsed);
self.iteration += 1;
}
pub fn run(&mut self, steps: usize) {
let pb = ProgressBar::new(steps as u64);
pb.set_style(ProgressStyle::default_bar()
.template("{spinner:.green} [{elapsed_precise}] [{bar:40.cyan/blue}] {pos}/{len} ({eta} {percent}%, {per_sec})").expect("invalid progresstyle template")
.progress_chars("#>-"));
for _ in 0..steps {
self.step();
pb.inc(1);
}
pb.finish();
let avg_per_step: f64 =
self.time_per_step_list.iter().sum::<f64>() / self.time_per_step_list.len() as f64;
let avg_per_agent: f64 =
self.time_per_agent_list.iter().sum::<f64>() / self.time_per_agent_list.len() as f64;
println!(
"Average time per step: {}ms\nAverage time per agent: {}ms",
avg_per_step, avg_per_agent
);
}
pub fn population_grids(&self) -> &[Grid] {
&self.population_grids
}
pub fn palette(&self) -> Palette {
self.palette
}
}