borrow more
This commit is contained in:
parent
d9c6c8143e
commit
eeecf4bd74
113
src/function.rs
113
src/function.rs
@ -91,7 +91,7 @@ impl FunctionEntry {
|
||||
/// Creates and does the math for creating all the rectangles under the
|
||||
/// graph
|
||||
fn integral_rectangles(
|
||||
&self, integral_min_x: f64, integral_max_x: f64, sum: Riemann, integral_num: usize,
|
||||
&self, integral_min_x: &f64, integral_max_x: &f64, sum: &Riemann, integral_num: &usize,
|
||||
) -> (Vec<(f64, f64)>, f64) {
|
||||
if integral_min_x.is_nan() {
|
||||
panic!("integral_min_x is NaN")
|
||||
@ -99,9 +99,9 @@ impl FunctionEntry {
|
||||
panic!("integral_max_x is NaN")
|
||||
}
|
||||
|
||||
let step = (integral_min_x - integral_max_x).abs() / (integral_num as f64);
|
||||
let step = (integral_min_x - integral_max_x).abs() / (*integral_num as f64);
|
||||
|
||||
let data2: Vec<(f64, f64)> = dyn_iter(&step_helper(integral_num, integral_min_x, step))
|
||||
let data2: Vec<(f64, f64)> = dyn_iter(&step_helper(*integral_num, &integral_min_x, &step))
|
||||
.map(|x| {
|
||||
let step_offset = step * x.signum(); // store the offset here so it doesn't have to be calculated multiple times
|
||||
let x2: f64 = x + step_offset;
|
||||
@ -132,20 +132,22 @@ impl FunctionEntry {
|
||||
pub fn get_func_str(&self) -> &str { &self.func_str }
|
||||
|
||||
/// Helps with processing newton's method depending on level of derivative
|
||||
fn newtons_method_helper(&self, threshold: f64, derivative_level: usize) -> Option<Vec<Value>> {
|
||||
fn newtons_method_helper(
|
||||
&self, threshold: &f64, derivative_level: usize,
|
||||
) -> Option<Vec<Value>> {
|
||||
let range = self.min_x..self.max_x;
|
||||
let newtons_method_output: Vec<f64> = match derivative_level {
|
||||
0 => newtons_method_helper(
|
||||
threshold,
|
||||
range,
|
||||
self.output.back.to_owned().unwrap(),
|
||||
&threshold,
|
||||
&range,
|
||||
&self.output.back.to_owned().unwrap(),
|
||||
&|x: f64| self.function.get(x),
|
||||
&|x: f64| self.function.get_derivative_1(x),
|
||||
),
|
||||
1 => newtons_method_helper(
|
||||
threshold,
|
||||
range,
|
||||
self.output.derivative.to_owned().unwrap(),
|
||||
&threshold,
|
||||
&range,
|
||||
&self.output.derivative.to_owned().unwrap(),
|
||||
&|x: f64| self.function.get_derivative_1(x),
|
||||
&|x: f64| self.function.get_derivative_2(x),
|
||||
),
|
||||
@ -157,8 +159,7 @@ impl FunctionEntry {
|
||||
} else {
|
||||
Some(
|
||||
dyn_iter(&newtons_method_output)
|
||||
.map(|x| (*x, self.function.get(*x)))
|
||||
.map(|(x, y)| Value::new(x, y))
|
||||
.map(|x| Value::new(*x, self.function.get(*x)))
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
@ -169,7 +170,7 @@ impl FunctionEntry {
|
||||
&mut self, min_x: &f64, max_x: &f64, width_changed: bool, settings: &AppSettings,
|
||||
) {
|
||||
let resolution: f64 = settings.plot_width as f64 / (max_x.abs() + min_x.abs());
|
||||
let resolution_iter = resolution_helper(settings.plot_width + 1, *min_x, resolution);
|
||||
let resolution_iter = resolution_helper(&settings.plot_width + 1, &min_x, &resolution);
|
||||
|
||||
// Makes sure proper arguments are passed when integral is enabled
|
||||
if self.integral && settings.integral_changed {
|
||||
@ -179,11 +180,11 @@ impl FunctionEntry {
|
||||
let mut partial_regen = false;
|
||||
let min_max_changed = (min_x != &self.min_x) | (max_x != &self.max_x);
|
||||
|
||||
self.min_x = *min_x;
|
||||
self.max_x = *max_x;
|
||||
if width_changed {
|
||||
self.output.invalidate_back();
|
||||
self.output.invalidate_derivative();
|
||||
self.min_x = *min_x;
|
||||
self.max_x = *max_x;
|
||||
} else if min_max_changed && self.output.back.is_some() {
|
||||
partial_regen = true;
|
||||
|
||||
@ -196,22 +197,21 @@ impl FunctionEntry {
|
||||
.into();
|
||||
|
||||
let back_data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.cloned()
|
||||
.map(|x| {
|
||||
if let Some(i) = x_data.get_index(x) {
|
||||
back_cache[i]
|
||||
} else {
|
||||
Value::new(x, self.function.get(x))
|
||||
Value::new(*x, self.function.get(*x))
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
assert_eq!(back_data.len(), settings.plot_width + 1);
|
||||
// assert_eq!(back_data.len(), settings.plot_width + 1);
|
||||
self.output.back = Some(back_data);
|
||||
|
||||
let derivative_cache = self.output.derivative.as_ref().unwrap();
|
||||
let new_derivative_data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.map(|x| {
|
||||
if let Some(i) = x_data.get_index(*x) {
|
||||
if let Some(i) = x_data.get_index(x) {
|
||||
derivative_cache[i]
|
||||
} else {
|
||||
Value::new(*x, self.function.get_derivative_1(*x))
|
||||
@ -219,7 +219,7 @@ impl FunctionEntry {
|
||||
})
|
||||
.collect();
|
||||
|
||||
assert_eq!(new_derivative_data.len(), settings.plot_width + 1);
|
||||
// assert_eq!(new_derivative_data.len(), settings.plot_width + 1);
|
||||
|
||||
self.output.derivative = Some(new_derivative_data);
|
||||
} else {
|
||||
@ -227,65 +227,50 @@ impl FunctionEntry {
|
||||
self.output.invalidate_derivative();
|
||||
}
|
||||
|
||||
self.min_x = *min_x;
|
||||
self.max_x = *max_x;
|
||||
|
||||
let threshold: f64 = resolution / 2.0;
|
||||
|
||||
if !partial_regen {
|
||||
self.output.back = Some({
|
||||
if self.output.back.is_none() {
|
||||
let data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.map(|x| Value::new(*x, self.function.get(*x)))
|
||||
.collect();
|
||||
assert_eq!(data.len(), settings.plot_width + 1);
|
||||
if self.output.back.is_none() {
|
||||
let data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.map(|x| Value::new(*x, self.function.get(*x)))
|
||||
.collect();
|
||||
assert_eq!(data.len(), settings.plot_width + 1);
|
||||
|
||||
self.output.back = Some(data);
|
||||
}
|
||||
self.output.back = Some(data);
|
||||
}
|
||||
|
||||
self.output.back.as_ref().unwrap().clone()
|
||||
});
|
||||
|
||||
self.output.derivative = {
|
||||
if self.output.derivative.is_none() {
|
||||
let data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.map(|x| Value::new(*x, self.function.get_derivative_1(*x)))
|
||||
.collect();
|
||||
assert_eq!(data.len(), settings.plot_width + 1);
|
||||
self.output.derivative = Some(data);
|
||||
}
|
||||
|
||||
Some(self.output.derivative.as_ref().unwrap().clone())
|
||||
};
|
||||
if self.output.derivative.is_none() {
|
||||
let data: Vec<Value> = dyn_iter(&resolution_iter)
|
||||
.map(|x| Value::new(*x, self.function.get_derivative_1(*x)))
|
||||
.collect();
|
||||
assert_eq!(data.len(), settings.plot_width + 1);
|
||||
self.output.derivative = Some(data);
|
||||
}
|
||||
}
|
||||
|
||||
self.output.integral = match self.integral {
|
||||
true => {
|
||||
if self.output.integral.is_none() {
|
||||
let (data, area) = self.integral_rectangles(
|
||||
settings.integral_min_x,
|
||||
settings.integral_max_x,
|
||||
settings.riemann_sum,
|
||||
settings.integral_num,
|
||||
);
|
||||
self.output.integral =
|
||||
Some((data.iter().map(|(x, y)| Bar::new(*x, *y)).collect(), area));
|
||||
}
|
||||
|
||||
let cache = self.output.integral.as_ref().unwrap();
|
||||
Some((cache.0.clone(), cache.1))
|
||||
if self.integral {
|
||||
if self.output.integral.is_none() {
|
||||
let (data, area) = self.integral_rectangles(
|
||||
&settings.integral_min_x,
|
||||
&settings.integral_max_x,
|
||||
&settings.riemann_sum,
|
||||
&settings.integral_num,
|
||||
);
|
||||
self.output.integral =
|
||||
Some((data.iter().map(|(x, y)| Bar::new(*x, *y)).collect(), area));
|
||||
}
|
||||
false => None,
|
||||
};
|
||||
} else {
|
||||
self.output.integral = None;
|
||||
}
|
||||
|
||||
// Calculates extrema
|
||||
if settings.do_extrema && (min_max_changed | self.output.extrema.is_none()) {
|
||||
self.output.extrema = self.newtons_method_helper(threshold, 1);
|
||||
self.output.extrema = self.newtons_method_helper(&threshold, 1);
|
||||
}
|
||||
|
||||
// Calculates roots
|
||||
if settings.do_roots && (min_max_changed | self.output.roots.is_none()) {
|
||||
self.output.roots = self.newtons_method_helper(threshold, 0);
|
||||
self.output.roots = self.newtons_method_helper(&threshold, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
52
src/misc.rs
52
src/misc.rs
@ -71,18 +71,18 @@ pub struct SteppedVector {
|
||||
impl SteppedVector {
|
||||
/// Returns `Option<usize>` with index of element with value `x`. and `None`
|
||||
/// if `x` does not exist in `data`
|
||||
pub fn get_index(&self, x: f64) -> Option<usize> {
|
||||
pub fn get_index(&self, x: &f64) -> Option<usize> {
|
||||
// if `x` is outside range, just go ahead and return `None` as it *shouldn't* be
|
||||
// in `data`
|
||||
if (x > self.max) | (self.min > x) {
|
||||
if (x > &self.max) | (&self.min > x) {
|
||||
return None;
|
||||
}
|
||||
|
||||
if x == self.min {
|
||||
if x == &self.min {
|
||||
return Some(0);
|
||||
}
|
||||
|
||||
if x == self.max {
|
||||
if x == &self.max {
|
||||
return Some(self.data.len() - 1);
|
||||
}
|
||||
|
||||
@ -91,7 +91,7 @@ impl SteppedVector {
|
||||
|
||||
// Make sure that the index is valid by checking the data returned vs the actual
|
||||
// data (just in case)
|
||||
if self.data[possible_i] == x {
|
||||
if &self.data[possible_i] == x {
|
||||
// It is valid!
|
||||
Some(possible_i)
|
||||
} else {
|
||||
@ -221,7 +221,7 @@ pub fn decimal_round(x: f64, n: usize) -> f64 {
|
||||
/// `f_1` is f'(x) aka the derivative of f(x)
|
||||
/// The function returns a Vector of `x` values where roots occur
|
||||
pub fn newtons_method_helper(
|
||||
threshold: f64, range: std::ops::Range<f64>, data: Vec<EguiValue>, f: &dyn Fn(f64) -> f64,
|
||||
threshold: &f64, range: &std::ops::Range<f64>, data: &Vec<EguiValue>, f: &dyn Fn(f64) -> f64,
|
||||
f_1: &dyn Fn(f64) -> f64,
|
||||
) -> Vec<f64> {
|
||||
data.iter()
|
||||
@ -229,9 +229,7 @@ pub fn newtons_method_helper(
|
||||
.filter(|(prev, curr)| !prev.y.is_nan() && !curr.y.is_nan())
|
||||
.filter(|(prev, curr)| prev.y.signum() != curr.y.signum())
|
||||
.map(|(prev, _)| prev.x)
|
||||
.map(|start_x| {
|
||||
newtons_method(f, f_1, start_x, range.clone(), threshold).unwrap_or(f64::NAN)
|
||||
})
|
||||
.map(|start_x| newtons_method(f, f_1, &start_x, &range, &threshold).unwrap_or(f64::NAN))
|
||||
.filter(|x| !x.is_nan())
|
||||
.collect()
|
||||
}
|
||||
@ -241,21 +239,21 @@ pub fn newtons_method_helper(
|
||||
/// `f_1` is f'(x) aka the derivative of f(x)
|
||||
/// The function returns an `Option<f64>` of the x value at which a root occurs
|
||||
fn newtons_method(
|
||||
f: &dyn Fn(f64) -> f64, f_1: &dyn Fn(f64) -> f64, start_x: f64, range: std::ops::Range<f64>,
|
||||
threshold: f64,
|
||||
f: &dyn Fn(f64) -> f64, f_1: &dyn Fn(f64) -> f64, start_x: &f64, range: &std::ops::Range<f64>,
|
||||
threshold: &f64,
|
||||
) -> Option<f64> {
|
||||
let mut x1: f64 = start_x;
|
||||
let mut x1: f64 = *start_x;
|
||||
let mut x2: f64;
|
||||
let mut fail: bool = false;
|
||||
loop {
|
||||
x2 = x1 - (f(x1) / f_1(x1));
|
||||
x2 = &x1 - (f(x1) / f_1(x1));
|
||||
if !range.contains(&x2) {
|
||||
fail = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// If below threshold, break
|
||||
if (x2 - x1).abs() < threshold {
|
||||
if (x2 - x1).abs() < *threshold {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -299,18 +297,16 @@ where
|
||||
}
|
||||
// Returns a vector of length `max_i` starting at value `min_x` with resolution
|
||||
// of `resolution`
|
||||
pub fn resolution_helper(max_i: usize, min_x: f64, resolution: f64) -> Vec<f64> {
|
||||
pub fn resolution_helper(max_i: usize, min_x: &f64, resolution: &f64) -> Vec<f64> {
|
||||
(0..max_i)
|
||||
.map(|x| (x as f64 / resolution as f64) + min_x)
|
||||
.map(|x| (x as f64 / resolution) + min_x)
|
||||
.collect()
|
||||
}
|
||||
|
||||
// Returns a vector of length `max_i` starting at value `min_x` with step of
|
||||
// `step`
|
||||
pub fn step_helper(max_i: usize, min_x: f64, step: f64) -> Vec<f64> {
|
||||
(0..max_i)
|
||||
.map(|x| (x as f64 * step as f64) + min_x)
|
||||
.collect()
|
||||
pub fn step_helper(max_i: usize, min_x: &f64, step: &f64) -> Vec<f64> {
|
||||
(0..max_i).map(|x| (x as f64 * step) + min_x).collect()
|
||||
}
|
||||
|
||||
pub fn chars_take(chars: &[char], i: usize) -> String {
|
||||
@ -339,18 +335,18 @@ mod tests {
|
||||
assert_eq!(stepped_vector.get_min(), min as f64);
|
||||
assert_eq!(stepped_vector.get_max(), max as f64);
|
||||
|
||||
assert_eq!(stepped_vector.get_index(min as f64), Some(0));
|
||||
assert_eq!(stepped_vector.get_index(max as f64), Some(len_data - 1));
|
||||
assert_eq!(stepped_vector.get_index(&(min as f64)), Some(0));
|
||||
assert_eq!(stepped_vector.get_index(&(max as f64)), Some(len_data - 1));
|
||||
|
||||
for i in min..=max {
|
||||
assert_eq!(
|
||||
stepped_vector.get_index(i as f64),
|
||||
stepped_vector.get_index(&(i as f64)),
|
||||
Some((i + min.abs()) as usize)
|
||||
);
|
||||
}
|
||||
|
||||
assert_eq!(stepped_vector.get_index((min - 1) as f64), None);
|
||||
assert_eq!(stepped_vector.get_index((max + 1) as f64), None);
|
||||
assert_eq!(stepped_vector.get_index(&((min - 1) as f64)), None);
|
||||
assert_eq!(stepped_vector.get_index(&((max + 1) as f64)), None);
|
||||
}
|
||||
|
||||
/// Ensures [`decimal_round`] returns correct values
|
||||
@ -376,16 +372,16 @@ mod tests {
|
||||
#[test]
|
||||
fn resolution_helper_test() {
|
||||
assert_eq!(
|
||||
resolution_helper(10, 1.0, 1.0),
|
||||
resolution_helper(10, &1.0, &1.0),
|
||||
vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
resolution_helper(5, -2.0, 1.0),
|
||||
resolution_helper(5, &-2.0, &1.0),
|
||||
vec![-2.0, -1.0, 0.0, 1.0, 2.0]
|
||||
);
|
||||
|
||||
assert_eq!(resolution_helper(3, -2.0, 1.0), vec![-2.0, -1.0, 0.0]);
|
||||
assert_eq!(resolution_helper(3, &-2.0, &1.0), vec![-2.0, -1.0, 0.0]);
|
||||
}
|
||||
|
||||
/// Tests [`option_vec_printer`]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user